
DTIC FILE Copy

RADC-TR-90-1 82
Final Technical Report
August 1990

IAD-A227 856

DECENTRALIZED REAL-TIME
SCHEDULING

Carnegie Mellon University

J. Duane Northcutt, Raymond K. Clark, David P. Maynard, Jeffrey E. Trull

DTICE1 ELECESOCT 2 20vNE ,

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Rome Air Development Center
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

90 10 18 022

This report has been reviewed by the RADC Public Affairs Division (PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-90-182 has been reviewed and is approved for publication.

APPROVED:

THOMAS F. LAWRENCE
Project Engineer

APPROVED:

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

- FOR THE COMMANDER: (4V Y
IGOR G. PLONISCH
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC mailing
list, or if the addressee is no longer employed by your organization, please

notify RADC (COTD) Griffiss AFB NY 13441-5700. This will assist us in main-
taining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document require that it be returned.

Form Approved
REPORT DOCUMENTATION PAGE 0MB No 0704 0788

- m t a27 A'tn ;A22 43C2 t 2) ?*' e " a mo 3-36) e. .nPCet5?2 d . 1.n is pton. -C o5C3

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I August 1990 Feb 89 to Feb 90

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

DECENTRALIZED REAL-TIME SCHEDULING C - F30602-88-D-0026,
Task B-9-3505

PE - 62702F
6 AUTHOR(S) PR - 5581

J. Duane Northcutt, Raymond K. Clark, TA - 21

David P. Maynard, Jeffrey E. Trull WU - PG

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Carnegie Mellon University

School of Computer Science N/A

Dept. of Electrical and Computer Engineering

Pittsburgh PA 15213

9. SPONSORING;MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING, MONITORING -

AGENCY REPORT NUMBER
Rome Air Development Center (COTD)

Griffiss AFB NY 13441-5700 RADC-TR-90-182

11. SUPPLEMENTARY NOTES

RADC Project Engineer: Thomas F. Lawrence/COTD/(315) 330-2158

12a. DISTRIBUTION, AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (,iaximum 260 woros)

> This document describes experiments designed to evaluate the behavior and perform-

ance of various scheduling policies for the Alpha real-time distributed operating

systemo(Norrhcutt 87).; Alpha is an adaptable decentralized operating system being

developed as a part of the Archons project's on-going research into real-time

distributed systems. Timely completion of an application's computational activities

is one of the most inportant functions of a real-time system. Therefore, the proper

scheduling of those activities is of critical importance.

The Alpha programming model provides simple mechanisms for an application to specify

its timelinesrs requirements. The scheduler may consider this time constraint

information when scheduling activities for execution. To guage the effectiveness

of Alpha as an operating system for real-time applications, an understanding of its

scheduling facility is necessary. To this end, a study of the effects of various

different scheduling policies was made. To evaluate these policies, a real-time

application was created to serve as an experimental workload. The application was

. TR15. NUMBER OF PAGES,-.SU5,,ECT TERMS

Real-Time Scheduling Distributed Operating System 246

Distributed System Alpha 16 PRICE CODE
Decentralized Control Best-Effort Scheduler

11 SECURITY CLASSF;CATION 18 SECUR;TY CLASSIFICATION 19 SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLAS S 1117 ED UNCLASS I FI ED UNCI.AS S I FI ED IrL

- 7 ,) ') 2C - , ".

UNCLASSIFIED

designed to simplify the modeling of tasks with a wide range of timeliness
requirements and to provide a visual indication of scheduler performance.

Alpha provides a clean, well-defined interface between the scheduling sub-
system and the kernel proper. A general scheduler framework, independent
of any specific policy, has been implemented to simplify the development
and substitution of different policy modules.- This framework greatly simpli-
fies the experimental comparison of different policies. To date, eight
different scheduling policies have been implemented for Alpha. Five of these
policies are examined in this document - preemptive round-robin, static
priority, dynamic deadline, shortest processing time, and Best-Effort (Locke
86).

The experiments were designed to compare the application-level behavior of
various scheduling policies under a variety of loading conditions. Each
policy was judged based on criteria such as how well the application timeli-
ness requirements were met and what fraction of the potential value of the
application was obtained. The experimental results were then studied to
develop emphirical observations about the relative behavior of each scheduling
policy and to derive an understanding of the scheduling decisions that were
made.

AGOOSSIOU ?or ' -

NTIS Mai
DIC TAB
UnenmoUDoed 0
Juitifioatio

Distribution/

UNCLASSIFIED

Preface

The research discussed in this report investigates decentralized real-time scheduling in
the context of the Alpha Operating System. Four goals have been identified for this work:
(1) to identify areas where Alpha would benefit from additional decentralized real-time
scheduling research; (2) to define decentralized real-time scheduling algorithms for incorpo-
ration into Alpha; (3) to develop criteria to determine the efficacy of these algorithms; and
(4) to evaluate the algorithms.

A two-pronged approach has been adopted to satisfy these goals. On one front, Alpha
Release 1 is studied and evaluated. This effort identifies and evaluates the relevant real-
time -cheduling facilities in Alpha, revealing open questions that require further research.
On the second front, research is performed that will improve Alpha in future releases. In
some cases, this work focuses on questions identified by the analysis of Alpha Release 1,
while in other cases it extends Alpha's capabilities in directions previously identified-for
example, providing the foundation for the real-time transaction facility. In the future, the re-
sults of this research will be put into practice in Alpha.

This report is divided into three sections, one evaluating Alpha Release 1 and the others
reporting on new scheduling research.

Part A describes a demonstration program that was used to study various scheduling pol-
icies, including a Best-Effort Scheduler, in the context of Alpha Release 1. The program was
designed specifically to isolate scheduling policy decisions, to provide a graphic display of
scheduling algorithm behavior, and to measure scheduler performance. Each scheduling poli-
cy was analyzed under a variety of workloads, with Alpha's Best-Effort Scheduler perform-
ing well. The results of this investigation are included in Part A.

Part B addresses the issue of scheduling distributed computations. It outlines ongoing
work to model decentralized and distributed computations, to describe best-effort scheduling
algorithms appropriate for this model, and to study the amount and type of information that is
required to schedule the computations effectively.

Part C extends best-effort techniques to schedule dependent activities in a supervisory
control real-time system. Dependent activities, which share common resour.es such as data
and devices, may also exchange signals to coordinate their actions. This study provides an
analytic framework to formally investigate various scheduling policies. Several useful proper-
ties of the resulting scheduling algorithm are proven within this francwork. In addition, sim-
ulation results are presented that demonstrate the effectiveness O, the algorithm when com-
pared to other algorithms. (Part C is actually a draft of a doctoral dissertation. As such, it is
expected that it will be revised and augmented in order to p-oduce the final version of the dis-
sertation.)

Note: This Final Technical Report and the Six-Month Technical Report (Interim Techni-

cal Report) together detail the research performed for this contract. While the material pre-
sented in Part C of this report updates and expands on Part A of the Interim Technical Re-
port; Part B of the Interim Technical Report, which de cribed the completed analysis of the
Communication Subsystem of Alpha Release 1, is not repeated or revised in this document.

The Alpha Operating System:

Scheduler Evaluation Experiments

Jeffrey Trull
J. Duane Northcutt
David P. Maynard
Raymond K. Clark

School of Computer Science
Department of Electrical and Computer En iineering

Carnegie Mellon University

February 6, 1990

A-i

Table of Contents

Abstract .. A-1

1. Introduction ... A-3
1.1 The Alpha Operating System ... A-3

1.1.1 Real-Time Scheduling Requirements ... A-4
1.1.2 Distribution Requirements .. A-5

1.2 Testing Alpha Scheduling Policies .. A-6
1.2.1 Test Objectives A-6
1.2.2 Test Application Requirements ... A-7

2. Scheduler Evaluation System ... A-8
2.1 Application Program Structure .. A-8

2.1.1 UNIX Implementation ... A-11
2.1.2 Alpha Implementation ... A-11

2.2 External Environment Simulator ... A-12
2.2.1 Simulator Structure ... A-12
2.2.2 Operator Interface .. A- 12

3. The Structure of an Alpha Scheduler ... A-15
3.1 Scheduler/Kernel Interface .. A-15
3.2 Structure of Generic Scheduler .. A-17

4. Scheduling Policies .. A-19
4.1 Round Robin .. A-19
4.2 Static Priority ... A-19
4.3 Deadline .. A-19
4.4 Shortest Processing Time ... A-20
4.5 Best Effort .. A-20

5. Experim ental Results .. A-21
5.1 Experimental Design .. A-21

5.1.1 Load Generation .. A-21
5.1.2. Evaluation Metrics .. A-21

5.2 Behavior Analysis .. A-22
5.3 Simulation Results ... A-26

5.3.1 Thread Importance Sensitivity .. A-26
5.3.2 Meeting Application Time Constraints ... A-29
5.3.3 Maximizing Application Value ... A-30

6. Conclusions .. A-34

References .. A-35

The Alpha Operating System: Scheduler Evaluation Experiments A-]

Abstract

This document describes our experience with a set of experiments designed to evaluate
the behavior and performance of various scheduling policies for the Alpha real-time distribut-
ed operating system [Northcutt 87]. Alpha is an adaptable decentralized operating system
being developed as a part of the Archons project's on-going research into real-time distribut-
ed systems. Timely completion of an application's computational activities is one of the
most important functions of a real-time system. Therefore, the proper scheuu l~ng of those ac-
tivities is of critical importance.

The Alpha programming model provides simple mechanisms for an application to specify
its timeliness requirements. The scheduler may consider this time constraint information
when scheduling activities for execution. To gauge the effectiveness of Alpha as an operat-
ing system for real-time applications, an understanding of its scheduling facility is neces-
sary. To this end, a study of the effects of various different scheduling policies was made.
To evaluate these policies, a real-time application was created to serve as an experimental
workload. The application was designed to simplify the modeling of tasks with a wide range
of timeliness requirements and to provide a visual indication of scheduler performance.

Alpha provides a clean, well-defined interface between the scheduling subsystem and
the kernel proper. A general scheduler framework, independent of any specific policy, has
been implemented to simplify the development and substitution of different policy modules.
This framework greatly simplifies the experimental comparison of different policies. To date,
eight different scheduling policies have been implemented for Alpha. Five of these policies
are examined in this document-preemptive round-robin, static priority, dynamic deadline,
shortest processing time, and Best-Effort (Locke 86].

The experiments were designed to compare the application-level behavior of various
scheduling policies under a variety of loading conditions. Each policy was judged based on
criteria such as how well the application timeliness requirements were met and what fraction
of the potential value of the application was obtained. The experimental results were then
studied to develop empirical observations about the relative behavior of each scheduling poli-
cy and to derive an understanding of the scheduling decisions that were made.

The Alpha Operating System: Scheduler Evaluation Experiments A-3

1. Introduction

This document describes the experience of the Archons research project in evaluating a
set of scheduling policies for use in the Alpha distributed real-time operating system. Alpha

is unique among operating systems in the problem area it seeks to address: distributed, su-

pervisory-level, real-time command and control. This problem area dictates some special re-
quirements that the system must fulfill. These requirements are associated chiefly with the
need to manage resources in a timely and decentralized fashion. The Alpha programming
model permits the convenient expression of the timeliness requirements of an application.

The manner in which the active scheduling policy uses this information determines how well
the timeliness requirements are satisfied. This set of experiments examines the behavior

and performance of five different scheduling policies that have been implemented for Alpha.
Before examining these policies or the experiments in detail, however, it is useful to under-

stand the nature and requirements of Alpha.

1.1 The Alpha Operating System

The Alpha operating system is unique because of the requirements imposed by its appli-
cation domain. As a distributed real-time command and control system, Alpha is intended to
support applications where most of the activities in the system have stringent time con-
straints that are a matter of correctness rather than convenience-the safety of human life
and property may be dependent on the correct functioning of the system. In addition, the dis-
tributed nature of the system also places unusual demands on Alpha. Even though the sys-
tem consists of a collection of physically dispersed processing elements, system computation
resources must be managed so as to cooperatively perform a single mission, rather than
treated (as is currently common) as a network of communicating, but otherwise independent
and unrelated individual processing elements.

The Alpha programming model directly supports these needs [Northcutt 88b]. From the
viewpoint of the programmer, the physically dispersed system may be logically viewed as a
centralized one. The basic abstractions in Alpha include objects, threads, and operation invo-
cations. In Alpha, an object is defined as a logically related collection of data and the code
used to manipulate that data. The external interface to an object consists of the set of opera-
tions that may be performed on the object, and represents the only means of accessing the
object's encapsulated data. The basic unit of activity in the Alpha system is known as a
threc4, which is a representation of a logical point of program execution. Threads are the en-
tities which animate the otherwise passive objects in the system. Threads move between
objects by means of operation invocations. Operation invocations are similar in some ways
to procedure calls, accepting and returning parameters in much the same way.

In Alpha, there may be any number of threads executing within a single object. Further-
more, because objects may be on any physical processing element, threads may, as a result,
move between the processing nodes in the system. When a thread is created, it begins its
execution with the invocation of some operation on an. object. The thread continues execu-

A-4 The Alpha Operating System: Scheduler Evaluation Erperiments

tion until this initial operation is complete, at which point it is deleted. In the process of exe-

cuting any operation, a thread may invoke operations on other objects. thereby transferring

the thread into a new object (which may be on a different node). If the target of an invo,.ation

is on a different node, the thread state (including the current time constraints) is transferred

to the destination node.

It is important to recognize the difference between this programming model and that of

systems which support the process-message model. In the process model, a unit of computa-

tional activity is tightly bound to a piece of code and a physical processing element. When an
application is organized into objects which may be used by many system activities, it does

not make sense to confine points of control to specific code segments which belong exclusive-

ly to each thread. The thread abstraction in Alpha represents the essence of an abstract
computational activity, and is not burdened by unnecessary artifacts. A thread represents a

locus of program control and the current attributes the activity (e.g., its time constraints).

Threads move between objects without regard to their physical location, and do not incur
scheduling overhead as a result of each inter-object transition.

With respect to the real-time objectives of the system, the single most important re-

source that the Alpha system manages is the processing cycles available to the application.
Accordingly, processor scheduling has been a topic of great interest to the Archons project

for many years. The concept of time-value functions has been developed to describe the time

constraints of activities in real-time systems. Time-value functions were originally devel-
oped by E. Douglas Jensen in the context of ballistic missile defense [Jensen 75]. The con-

cept was subsequently developed by the Archons Project students and staff at CMU, and
was incorporated in the Alpha operating system [Northcutt 88a].

As a result of the previous work in this area, it has become clear that the algorithms
needed to perform time-driven resource management are computationally demanding. In ad-

dition, i distributed real-time system must also be capable of dealing with the e).ceptions
and unexpected events that may occur as a result of the application environment. Because of

its great importance and demanding requirements, the Alpha scheduling subsystem has be-
come the center of great attention and much effort has been directed towards it in the course

of developing practical solutions to the problem of time-driven resource management. In Al-
pha, the scheduling subsystem has been carefully partitioned from the rest of the system and

a separate processing element is provided for it. Furthermore, the scheduling subsystem

was designed to allow the simple and straightforward substitution of different scheduling al-
gorithms, for the purpose of evaluation and comparison.

1.1.1 Real-Time Scheduling Requirements

In real-time systems, the timeliness of a computation is as much a part of correctness as
is calculating the correct value. Threats to human life and property are the expected results
of failure to meet either criteria. Most current approaches to meeting application time con-

straints involve the use of a sufficiently large amount of excess resources to ensure that the
timeliness needs are met. This viewpoint is evident in the common belief that a real-time

operating system is one that has fast context switching times and rapid interrupt handling.

The Alpha Operating System Scheduler Evaluation Experiments A-5

Under this definition, any operating system running on a fast enough processor would be real-
time. What is really needed, however, are scheduling techniques that make the best possi-
ble use of processor cycles, both when there are enough resources to fully satisfy the activi-
ties in the system, and when there are not encL:gh cycles to meet all of an application time
constraints.

Some current approaches to resource management, spawned from the excess resources
school, involve the use of "guarantees" about resouice availability. This brand of manage-
ment can be the source of a great many problems, and is in itself antithetical to providing the
best use of the resources in a system. It is impossible to make any guarantees about re-
source availability unless the system designer is willing to permit extremely urgent excep-
tion conditions to be ignored in favor of the less important ones which have been guarav-r'od
the resources needed. Adding more resources to the system merely postpoaes the inevita-
ble moment when even they will not be sufficient.

Responsiveness to time constraints should be based not on guarantees but on system
software that does the best possible job (according to some meaningful application-level def-
inition) at any given moment. This includes not only times when there are sufficient resourc-
es, but also times when unexpected events occur and there are not enough resources to han-
dle every need of the application. Because many real-time systems are based on the belief
that is possible to make guarantees about resource availability, they do not even address be-
havior in overload. As a result, when overloads inevitably occur, they are handled poorly.
O. form of good perforrmance in overload is if ti., system's performance degrades propor-
tionally to the amount of overload. Most existing systems experience complete failure when
overloads occur. If the system is designed to have so much computation power tha- this will
almost never happen, it could represent a seriou3 waste of resources in the normal case. If,
on the other hand, the system is designed for lower performance and does not have sufficient
computational resources, system failure will occur. The optimum solution seems to be that
the system should have sufficient computational resources to perform the absolutely vital
system functions in the worst case. This way, the system does not fail in overload, but in-
stead postpones or does not perform the activities of lesser importance in favor of those that
are vital to successful mission co)mpletion.

1.1.2 Distribution Requirements

To be most effective, a mission-oriented distributed system must be strongly connected,
and must perform its activities as a whole in a cooperative (as opposed to competitive) fash-
ion. Alpha is the first distributed operating system to be truly decentralized. There is no
central entity whose failure would doom the system. The Alpha system provides support for
cooperation on a peer level which is implemented so that it can be logically viewed by the
programmer as having all the behavioral characteristics (in terms of synchronization and co-
herency) that a centralized system provides

The decentralized nature of Alpha has several important consequences with respect to
scheduling the application processors. The primary example involves time-constrained com-
putations that span multiple nodes. Proper handling of these distributed computations re-

A-6 The Alpha Operating System: Scheduler Evaluation Experiments

quires that the scheduling subsystem must be made aware of the time constraints associat-

ed with a thread when it arrives at a node. If. when a thread spans a series of nodes, a fail-

ure occurs in one of the nodes in the chain, the computation performed by that node is lost

and the computations based on its results are invalidated. Therefore, the head of the thread

must move back to the point prior to the first faiL:re and Alpha must intelligently schedule

cleanup activities for the orphaned threads. This includes removing time constraints that
were acquired on or after the broken node.

1.2 Testing Alpha Scheduling Policies

The importance of the scheduling function in the Alpha system demands that the policies

used to allocate processing resources meet (as well as possible) the requirements of the ap-
plication. It is of course impossible to know in advance what characteristics any given appli-

cation may require of a scheduling policy. Certain characteristics have, in the project's expe-

nence. proven to be especially helpful in real-time command and control applications. Using

these characteristics as a starting point, requirements for an application to run on the Alpha

system to exercise each scheduling policy on each of these points were devised.

1.2.1 'rest Objectives

The scheduling policies exauined in this report vary widely in such characteristics as the

amount and kind of information required, the computation time used in determining a sched-

ule, and the criteria used to rank competing threads into a schedule. A number of aspects of

each scheduling policy's behavior are of interest in this effort. The primary intent of this

wAork Aas to evaluate the relative abilities of various scheduling policies when given a cer-

tain amount of inomiation by the application. Also of interest is the examination and charac-
terization of the behavior of each scheduling policy within the context of Alpha.

The policies tested here were evaluated under both underload and overload conditions.

Because the policies each use a subset of the available time constraint information and be-

cause each policy makes a different use of this information, the behavior of an application can

var-v, greatly from policy to policy and between underload and overload. It was of particular
interest to discover how well the overload performance of the scheduling policies provided for

graceful degradation of system function. In general. if a system is not overloaded, a schedul-

er ,hould be able to create a schedule that permits all the activities in the system to com-

piete before_ their critical times (the tine at which completion of th,. activity vkould no longer

result in any value to the svstem). On the other hand, there are scheduling policies that do
not make ,-,e of all of the application-specified information that is available to the scheduling

subsystem in Alpha, and cannot attain even this level of performance. Oher policies make

use of the full information available in the time-value functions, but use different criteria to

determine schedules. The characterization of the resultant application-level behavior was of
great interest in these experiments.

Also examined was the response of various scheduling policies to particular scenarios
representing specific resource management problems. Furthermore, the sensitivity of sched-

uling policies to variations in their input parameters was also of interest, and experiments

The Alpha Operating System: Scheduler Evaluation Experiments A-7

were carried out to determine the extent LO which the values of various parameters affect the
schedules generated by each policy. These experiments provide clues about how the sched-
uling policies respond to small variations in constraints and how each policy makes trade-
offs when faced with difficult resource management decisions.

It was also intended that the results of this effort would include additional information

about the effectiveness of Alpha's design and performance. One item of particular interest is
the effectiveness of the separation of policy from mechanism within the scheduling sub-
system. Alpha was designed with a scheduling framework into which a wide range of user-
specified scheduling policies can be inserted. This process of providing a collection of mecha-
nisms and not mandating a specific policy is a characteristic of Alpha operating system as a
whole.

An important objective of this work is the evaluation of scheduling policies to find ones
which exhibit the desired behavior with respect to handling time constraints imposed by ape-

riodic events. It was hoped that the empirical examination of the behavior of different sched-
uling policies would suggest what which class of policies performs the best under conditions
representative of real-time command and control applications.

1.2.2 Test Application Requirements

In order to meet these objectives, it was necessary to come up with a sample application
which both contained the elements of a supervisory real-time control application and could il-
lustrate in clear terms the efficacy of each scheduling policy with regards to its ability to suc-

cessfully meet the given time constraints. The application must be one where it is possible
to separate the effects of the scheduling policy from the other functions which affect the be-
havior of the application. To meet these two objectives, the application must contain certain

elements. First of all, the sample application must contain hard time constraints-i.e. there
must exist activities which demand response within a specific amount of time. If the applica-
tion responds to a time-critical event after that time, the response will be of no benefit to the
system. In most real-time systems, there are such activities which simply must be complet-

ed before a certain time has elapsed. However, there also exist applications where the pen-
alty for not meeting a time constraint may not be the loss of the system, and in fact may not

be very severe at all. Such activities are known as soft time constraints.

Another important feature required of the test application was the presence of multiple
schedulable entities. It is necessary for the scheduler to have a reasonably large number of
tasks contending for processor cycles. Having multiple concurrent activiies helps ensure
that the scheduler must constantly make scheduling decisions, and that t1,_; effects of those
decisions will be visible at the application level. A small number of activities might reduce
the demands on the system to a point where there was no longer any need for the scheduler
to be intelligent about allocating processor cycles. Having multiple activities that each per-
form a similar function but with different time constraints would make it easier to see the im-
pact of the time constraints clearly.

A-8 The Alpha Operating System: Scheduler Evaluation Erpertrnents

2. Scheduler Evaluation System

After considerable thought, an application was devised which meets most of the criteria
expressed in the previous chapter. The abstract problem chosen for these experiments is the
task of keeping several bouncing balls in the air by means of moving motorized paddles.
Each ball has a paddle assigned to catch it. The application program that executes on Alpha
is responsible for controlling the motion of the paddles to ensure that balls are not dropped.
The application program receives sensor data giving the position and velocity of the balls,
and produces a series of actuator commands to move the paddles into position.

The experimental environment is composed of two major components-the me'chanical
subsystem that includes the physical environment in which the control activity exists (i.e.,
the balls, paddles, walls, ceiling, floor, gravity, etc.), and the control subsystem that includes
the application program that performs the control functions, the Alpha operating system, and
the Alpha testbed on which it all runs. Figure 1 illustrates the major components of the ex-
perinental environment.

In the work described here, the mechanical subsystem consists of an accurate simulation
of the mechanics of the bouncing balls and movable paddles. The system's sensors and actu-
ators are also simulated. In addition to greatly simplifying the -ystem, simulation of the me-
chanical subsystem permits the rapid and accurate gathe , of data, and permits the
straightforward manipulation of interesting experimental variables.

There are a number of software components which comprise the experimental environ-
ment. First is the Alpha application program which meets the given problem definition-i.e.,
the program must attempt to keep balls airborne by moving their associated paddles (the Al-
pha scheduling policy under test is responsible for scheduling the threads involved in this ac-
tivity). Secondly, there is the simulator which replaces the mechanical subsystem-i.e., the
devices that the program is designed to control and the physical environment in which they
exist. Finally, there is a human experimenter to manage the experiments (e.g., start and
stop simulation runs, alter simulation parameters, etc.).

2.1 Application Program Structure

The activities which comprise the application program have a variety of timeliness re-
quirements. The selection and ordering of the activities executed is controlled by the Alpha
scheduler. This causes the effectiveness of the application program to depend entirely on the
quality of the decisions made by the scheduler in Alpha. Because each of the paddles in the
application is assigned to a single ball, there is a separate system activity (i.e., thread) as-
signed to control the movement of each paddle. Therefore, when a paddle moves, the observ-
er can know that the system activity responsible for the movement of that particular paddle
has been scheduled and run.

The time constraints associated with threads are distinguished from each other in three
ways. The first way is through deadline information about the current task (in this applica-

The Alpha Operating System: Scheduler Evaluation Experiments A-9

Mechanical Subsystem

o o 7o
00

Sensor Data Actuator Commands

Control Subsystem

Figure 1: Experimental Environment

tion, the time until the assigned ball falls to the level of the paddle). The second way that
time-critical activities are described is by their expected computation time. This estimate is
the amount of processing resources expected to be required by a thread in order to meet a
time constraint. Finally, there is an integer value that can be assigned by the experimenter
to each thread. This value becomes a characteristic known as the importance of the thread.
In these experiments it corresponds to the importance of the ball that the thread is attempt-
ing to keep aloft. These three characteristics of each paddle movement activity (i.e., thread
time constraint) are provided by the application program to the Alpha scheduler. This time
constraint information is provided so that thread execution schedules can be created based
on the time a ball will take to fall to the floor, the time it will take to move its paddle to the
ball intercept point, and the value of the ball to be caught. All three of these characteristics
may be observed and controlled by the experimenter, so both the basis of the scheduler's de-
cisions and the effects of the decisions themselves (i.e., the sequence of paddle movements)
are directly visible.

.4-10 The Alpha Operating SYstern: Scheduler Evaluation Experiments

The simplicity of the application limits the amount of application-level interference that
could mask the effects of scheduling decisions. A single Piece of application code can de-
scribe the correct operation every paddle activity in the system. It is only necessary to de-
scribe how, for a single paddle, to use the sensor iformation on the location of the ball to
compute and execute a sequence of paddle movements that will place it in position to inter-
cept the falling ball. The only difference between paddle control activities is the critical time,
expected computation time, and importance iformation associated with each thread. The de-
cisions about which balls to (attempt to) catch, and in what order, are as a result made en-
tirely by the Alpha scheduler.

The simulator's interface to the application is provided through the Sun-UNIX remote
procedure call mechanism. The simulator communicates with the application paddle manage-
ment system to ensure that the tasks which move the paddles are running when the simula-
tion is started, and to remove them when die simulation is stopped or the user removes the
corresponding ball. To remove or add a paddle, the operator interface simply calls the corre-
sponding remote procedure. These remote procedure calls are translated into Alpha invoca-
tions by the Alpha external corrmmunications interface. Requests for simulator operations
gin as invocations from the application and arrive at the simulator as remote procedure calls.
The translations between each of -hese systems is provided by interfacirn- of"Aare. Thus
an invocation o-f a simulator interface operation eventually is performed as a rnote proce-
dure call on the Sun-UNIX system, and a remote procedure call of a paddle management rou-
tine becomes an invocation on an Alpha testbed node.

There are two major operations which tasks in the application can request frorm the simu-
lator. These operations are GetSensor, which returns information concerning the current po-
sition and velocity of a given ball, and MovePaddle, which allows the application to move a
paddle one increment to the left or right. MovePaddle requires a fixed amount of node compu-
tation time to run, as would be expected from an operation that required the- cortiuous puls-
ing of a :,tepper motor. GetSensor requires some time "or the data to U-.ve, ') it involves
blocking and waiting for the packet to arrive. Beth operations kere de'ined to -M'odel a
physical s%.,tem. There ure .lso !,,.o major ,peratiois that tl .e,:nnlu;r :,:n reque-t the ap-
plication to perform. These operations are AJdPadd e ,u-d R:c ,iTll .Tic :'cation
has a padd'e manager which implements the paddle -ontrol (,per..-Lio t:, ,c ru,,:or i Ln
invoke. -T-hne paddle manager allows the evaluation enirorment 'k::e t., -,tc>. -reate
and delete threads that implement individual paddles.

The implementation of the paddle manager depends on the zsk manaiement facilities
available on the application system, ats does the implementation of any auxiliary modules
used to communicate with the evaluation environment's system. The design ot the paddle
tasks, however, is fairly straightforward and is mostly independent of the system on which
they run. Each paddle task must query the position and velocity of its target ball, must calcu-
late the predicted landing location, and must move the paddle to that location. Once the ball
bounces or is dropped, the process is repeated. An important fact to realize is that the cyclic
nature of this task does not make the application a periodic process in the sense of having
predictable time constraints. The timeliness and processing requirements of the paddle tasks

The Alpha Operating System. Scheduler Evaluation Evperimenrs A-11

may be different each time they repeat the sense-move loop. As in most supervisory real-
time problems, the workload cannot be predicted in advance.

Two implementations of the application were developed. These were on a Sun L"N-IX
system and the Alpha Release 1 testbed. The UNIX version was implemented to simplify
testing the application interface to the simulator. The Alpha system A as the object of the ac-
tual experiments.

2.1.1 UNIX Implementation

The structure of the UNIX implementation is a direct translation of the English descrip-
tion given above. The paddle tasks, which are implemented with U.NLX processes, use the
remote procedure call mechanism to access the simulator GetSensor and MovePaddle opera-
tions. Each paddle process calls GetSensor to obtain the position and velocity of the ball as
well as the distance it can move in each paddle movement increment and the time each move
takes. It then computes the distance that it must move to catch the ball at the intercept
point, converts to the number of movement increments that it will require, and calls Move-
Paddle that many times, waiting the appropriate delay between each move. If the paddle ar-
rives early, it uses the UNIX interval timer facility to block until the intercept occurs.

"i.iere were several unfortunate characteristics of this UNIX-based implementation.
Probably the major problem was that UNIX, not being a real-time system. had no facilities
for describing the time constraints of a task. Each paddle task had a time constraint which
was the time required for a ball to fall to the level of the paddle, after which there was no use
in continuing to move to the intercept point. There was no way to describe this time con-
straint to the system, and there was no way to tell the system that such an movement at-
tempt should be aborted after it had already failed. It was possible to use the interval timer
facility and a variety of complicated tests to generate the desired behavior. However, there
was no general, natural way of describing the characteristics of the paddle tasks and having
them considered as part of the scheduling process.

2.1.2 Alpha Implementation

Because there are general mechanisms for describing time constraints in the Alpha sys-
tem, it was straightforward to implement the paddle tasks in a way that permitted them to
describe their time constraints to the scheduling subsystem. The structure of the paddle
task remains much the same from the UNIX version. However, the paddle task now used
the information acquired from the GetSensor call to determine the time required to move the
paddle to the intercept point. The importance of the task for the purposes of the scheduler is
given by the value of the ball scaled by a constant. The value function is given by a constant
which drops to zero at the time that the ball will pass the level of the paddle. Such a time
constraint forms what is called a hard deadline.

Depending on the scheduling policy used, some or all of this time constraint information
may be utilized to determine a good schedule. Under policies that support dynamic dead-
lines, the tasks can be automatically aborted out of their deadlines once the deadline has

A-12 The Alpha Operating System. Scheduler Evaluation Eiperinments

passed (tlii.s eliminated the elaborate checking to determine if the ball has passed yet). As
soon as the ball is dropped, the deadline is aborted.

2.2 External Environment Simulator

The external environment simulator serves as a surrogate for the real-world sensors and

actuators comprising the external environment of a supervisory control system. It provides

functions to read the sensors and move the actuators, and keeps track of the changes in the

simulated environment. A graphical operator interface allows the user to control the simula-
tion. These two modules together allow the experimenter to manipulate the situation the
workload and record the results.

2.2.1 Simulator Structure

The simulator models the motion of the balls and the paddles and provides sensor infor-

mation about the current state of both. The interfa-ce be:veen the e~aluation environment

and the application was designed so that the application cculd be placed into a real physical

situation identical to that which was bein2 simulated, and no change to the application would
be necessary. In addition to modeling the motion of the balls, the simulator accepts requests

from the application that cause the paddles to move. It also accepts commands from the op-

erator interface that allow the user to start and stop the simulation, create or modify balls,

and extract performance information as the application is running. Other actions performed
by the simulator include notifying the application when a ball has been dropped.

The simulator performs most of its work during the simulation update period. This occurs
once every time period, and involves updating the positions and velocities of all the presently

existing balls, as well as checking for collisions and performing bounce calculations. These

computations are performed by modeling elastic collisions with the walls and paddles. To
better simulate the kinds of aperiodic loads which actual supervisory real-time systems ex-
perience, the bounce direction from a collision with the paddle is selected randomly. If during

the process of updating the simulator state, it is discovered that any balls have been
dropped, the application is notified and directed to remove the associated paddle. However,

to enable the user to sustain a constant load on the system, it is possible, using the operator
interface, to select certain balls that will remain in the simulation when dropped and will

bounce back up above the paddle instead of being removed from the simulation. The output

of the simnulator includes timestamped messages indicating when balls are caught or

dropped, and what the value of each ball is. With this information it is possible to compute a
wide variety of useful statistics about the performance of the system.

2.2.2 Operator Interface

The operator interface provides the experimenter with control over the simulation. It dis-

plays a window that contains a small control panel for managing the simuiation and a larger

subwindow that shows the current simulation state (see Figure 2'). There ae buttons on the
control pael that permit the user to stop and start the simulation. W\hen in the stopped

state, no paddle tasks are running on the Alpha s~stem and the user may add or remove

The Alpha Operating System: Scheduler Evaluation Ecpertments A-13

=II

Maker

3

Figure 2: User Interface

balls and paddles without difficulty. Balls are added or removed by using two buttons re-
served for that purpose. The operator selects locations lv "clicking" the mouse button in
the display area to indicate the ball or the position desired. Adding or removing a ball will re-
sult in the addition or removal of a corresponding paddle. In the stopped state, however, no
paddles are shown; the paddles first appear when the simulation is started. There are also
facilities for capturing and replaying sequences of action that appear in the display window,
as well as for saving and restoring initial ball placements. Selecting a ball displays a panel
that allows the user to alter its velocity, height, value, and paddle position.

When the user "clicks" the start button, the simulation begins and the balls start moving
according to their given initial conditions. Once the simulation is started the paddles start
moving Lo catL I the balls. The user may alter the distance a paddle travels with a single
pulse of the stepper motor, the paddle speed, and how much compute time each pulse takes,
the movement delay. With these two controls, it is possible to change the amount of load
present on the system. For example, increasing paddle speed decreases the number of com-
putations required. Increasing the motion delay increases the computation time required.

A-14 The Alpha Operating System. Scheduler Evaluatin Erpenments

This ability to adjust the positions and velocities of the balls and paddles greatly simplifles

the task of experimenting with a variety of loading conditions.

The Alpha Operating System: Scheduler Evaluatnon Experiments A-15

3. The Structure of an Alpha Scheduler

The scheduling function in Release I of Alpha is managed by an independent subsystem
that executes on a separate processor. A formalized interface defines the messages passed
between the Alpha kernel and the scheduler. To simplify the development of scheduling poli-
cies, a general framework for implementing policies has been defined. The framework han-
dles the actual message generation and processing, leaving the individual policy to decide
how to respond to various messages.

The scheduler framework dispatches each kind of message from the application processor
to a policy-supplied handler. Examples of these messages include messages that indicate
that a task should be added to or removed, messages that define how the time constraints of
the currently, running task have changed, and others which support the distributed nature of
Alpha, including cleanup for certain aborted operations. Each scheduling policy may choose
how to respond to these messages and how to utilize the information provided therein. All
eight schedulers which were implemented within this framework required only subsets of the
information provided by these messages, and none needed any structure which was not easi-
ly created within this framework.

3.1 Scheduler/Kernel Interface

The function of a scheduler in the Alpha system is to determine which of the currently
ready threads to run. To make this decision, the scheduler may use the time constraint infor-
mation provided to the scheduler by the application. This information consists of three parts:
a time-value function, indicating the time-varying value of completing a task at a given time,
an expected computation time, the cycle time required to complete the task, and an impor-
tance, a value used to scale the value function. A scheduling policy must handle changes in
these thread-provided parameters and, if necessary, correctly reevaluate the currently active
schedule.

In Release 1 of Alpha, the scheduling subsystem executes on a separate processor from
the application (and most of the Alpha kernel). The scheduling framework implements a
queued, message-based communication channel between the processors. Mess:ces are
transmitted in two pars. There is a command part, which indicates the command to be per-
formed, and a body which gives parameters to the command. The commands are:

Add: used to tell the scheduler of the presence of a thread which is newly available
for scheduling. This can occur when a new thread is created, when a blocked thread
is unblocked, or when a thread from another node starts running on the node. This
last variant is referred as a "surrogate add" because the structures representing
the thread on this node are acting as surrogates for the thread structure on the node
where it was created. There is also a version known as a delayed add; this pro-
vides a time delayed Add command and is utilized in implementing the kernel Sleep
operation. The parameters describing the function include a unique identifier for the
scheduler to refer to in communications with the application processor. If the Add is
a surrogate add, i.e. if the thread was created on another node and its point of con-

A-16 The Alpha Operating System: Scheduler Evaluation £rperiments

trol has just arrived on this node. the parameters include information about the time
constraints it accumulated prior to arriva] on this node.

Remove: indicates that the current thread has voluntarily given up the processor.
This usually occurs when the thread which is currenty running has blocked awaiting
some activity. Another version called Kill is used when the currently running thread
has permanently given up the processor. This occurs when a thread returns from
the invocation it started in, and when a thread that originated on another processor
completely finishes its work on the node.

Change: This command arrives whca the currently running thread has altered its
time constraints in some way. There are three ways in which this can occur. First,
the thread may enter a new deadline. This is referred as pushing time constraints,
because deadlines may be nested. Second, the thread may exit a deadline. For
similar reasons, this is referred to as popping time constraints. Finally, the thread
can change its importance.

Access Scheduling Information: There are four commands of this type. They all
relate to conditions when the time constraints must be accessed or altered outside
of the normal stacking methods. The dump subcommand is used to gather a
thread's time constraints in preparation for a remote invocation. The update com-
mand is used to update time constraint information such as total computation time
after the thread has been executing on a remote node. There are two commands
that deal with abort conditions that permit the correct time constraints for abort pro-
cessing to be determined. These are the Get and Set Abort Scheduling Information
commands. If a deadline aborts, the Get command is used to determine the correct
time constraints to operate the abort cleanup code with. The Set command is used
to force the time constraints of a specific thread into those which are required for its
abort processing.

Preemption Confirmation: This is a necessary element of the communication be-
tween scheduler and kernel. It is sent after a request to replace the currently run-
ning thread with another has been successfully processed. This allows the schedul-
er to update the amount of time a thread has run. There are two variations of this
command, one of which indicates that the currently running thread was preempted
successfully, and one which indicates that the processor was idle when the preemp-
tion was requested. This message is necessary to provide the scheduler with a
consistent picture of what is happening on the application processor.

Statistics Control: There are two of these commands, that turn on and off optional
statistics gathering, if the current scheduling policy supports logging.

There are only a .few circumstances in which the scheduler must initiate communications
with the kernel. Several of these instances occur as part of handshaking involved with the
scheduler commands. Two, however, are of fundamental importance to the operation of the
system. The Preempt command, which has been previously discussed, is used to tell the
kernel to run a specific thread. The Abort command is used when the scheduler determines
that a thread's critical tune has passed. It initiates abort processing for the missed dead-
line. This command is, of course, only of interest for policies that support deadlines.

The Alpha Operating System. Scheduler Evalu.on Experiments A-] 7

F1 ~ Foreground
LiDisatcher

Policy Foreground Routines

Cormand Foreground InputInterrupt Queue

D ispatcher
F 'W

t

FEl Timed Event Queue

Policy Interrupt Handlers

Figure 3: Basic Scheduler Structure

3.2 Structure of Generic Scheduler

Each of the scheduler commands described in the previous section must be implemented
by every scheduling policy. The policy routines which implement these commands are auto-
matically called when the commands ae received. It is possible to supply a null function if

the command is to be ignored by the policy, or an error function if the command should never
be received by the policy.

Each policy must supply two types of command handlers. The first kind is called when
the command is received under interrupt, and allows rapid handling of messages as well as
general interrupt-level processing. In addition, the scheduler framework supplies an internal
message queue which may be used to queue commands up for foreground processing (see
Figure 3). The framework calls foreground procedures corresponding to the commands in the
queue as they emerge. Any part of the handling for a command may be performed either un-

der interrupt or in the foreground. If all the commands are to be handled in the foreground,
then the interrupt tasks would simply enqueue the incoming commands into the foreground
queue.

The minimum requirements for a scheduler in the Alpha system are fairly simple. The
scheduler must remember the set of ready threads, and if the set is non-empty, make sure
that there is always something running on the application processor. The scheduler frame-
work provides a queue package which aids in the manipulation of schedules.

A-18 The Alpha Operating System. Scheduler Evuluatzon Etperiments

Scheduling policies that are more sophisticated, generally share some common character-
istics. First, the schedulers generally construct a list describing the order M which threads

should run. When a thread is added to the ready list or the time constraints of a thread are
changed, some computation is required to determine whether or not to reorder the list. The
operation of other commands, if any, depend on how the policy utilized the scheduling param-

eters provided by the threads.

The Alpha Operating System: Scheduler .r- aluation Experiments A-19

4. Scheduling Policies

Five of the eight policies implemented for use in the Alpha -ystem were selected for eval-

uation in these experiments. The following sections briefly describe the operation of each of

these policies.

4.1 Round Robin

The Round Robin policy is the fairest of all the schedulers. It treats all threads in the

system equally, giving each eligible thread the same fraction of the processor time.

The implementation of the Round Robin policy is straightforward. Every I OOms a timer

event is inserted into the queue by the policy timer interrupt routine. Upon receipt of a timer
event, the foreground command processor calls the timer routine, which removes the element

at the head of the queue and inserts iL a' the end. If the new head is different from the old
head, the application processor is preemp .:d with the new head of the queue. Add and Re-

move commands are handled in the simplest possible way. If the command is an Add, the

new thread is added at the end of the ready queue. If the command is a Remove, the thread

is removed from the ready queue, and the application processor is preempted with the new
head of the queue. Under Round Robin, time constraints are ignored, as are the miscella-

neous commands associated with accessing scheduling information.

4.2 Static Priority

Static Priority scheduling is the simplest method of dealing with scheduling parameter dif-
ferences between the thtreads available to run. Each thread is assigned a priority which is

equal to the importance part of its time constraint. The scheduler always selects the thread
with the highest priority, or one of them, if there are several with the same importance to

run. The time-criticality of the thread not taken into account.

The implementation of Static Priority requires no timer usage. The scheduler frame-

work's queue package inc'udes ordered insertion routies. so the Add handler ,imply makes

an insertion into the ready queue, then preempts the application processor if the head -hanz-

es. The Remove handler removes tie thread and preempts with the new head of the queue.
The Change handler handles reque.,t to change the importance of thread,,. This change is

accomplished by removing the thread from the queue and reinserting it with the new Impor-

tance. Again, if the head of the queue changes, the application processor is preempted Aith

the new head of the queue.

4.3 Deadline

The Deadline policy always schedules the thread with the closest critical time. For this

implementation, the Deadline policy, was extended to provide for the abortion of ieadlines
that have expired. If a thread misse, a deadline, it is forced out of the deadline section of
code and begins executing a user-defined deadline abort handler. If the system has enough

A-20 The Alpha Operating Svstem. Scheduler Evaluation F-periments

cycles to meet all of the application deadlines, the Deadline policy is opti..ial---every time
constraint is satisfied. If there exist deadlines which cannot be met, which is what is meant
by overload, then the Deadline policy may perform very poorly. For example, this policy may
,:tempt to run threads which cannot meet their deadlines, but which have early deadlines.

The deadline policy is implemented as a priority scheme where the time to deadline forms the
priority and the head of the queue is the item with the lowest priority. However, the Dead-
line policy uses the timer facilities to make sure each thread is aborted when its deadline

passes.

4.4 Shortest Processing Time

The Shortest Processing Time policy considers only the required computation time for

each thread. SPT always selects the thread with the lowest remaining computation time to
run. It is similar to Deadline and Static Priority in that it uses only a single figure of merit to
determine a schedule. It lacks optimal behavior of Deadline in underload, but may perform
well under overload since it is more likely to pick threads which can be performed. SPT in
general attempts to maximize the system throughput by completing as many threads as pos-
sible per unit time. SPT as implemented for Alpha has the automatic deadline abort mecha-
nism mentioned above. The implementation of SPT is almost identical to that of Deadline,

except the schedule queue is ordered b: the remaining processing time.

4.5 Best-Effort

Given the problems with the other schedulers, which use only a small portion of the avail-
able information to construct a schedule, it is clear that any superior scheduling policies will
have to make decisions based on all the information in the time constraints as well as the ex-
pected computation time. It is known that Deadline scheduling is optimal when the system
is underloaded. An improved scheduler can therefore use a Deadline scheduling method
when the system is underloaded. If the system is overloaded, the scheduler must decide
which threads not to run. Threads that cannot complete their deadlines are one obvious
choice. If that is not sufficient, the scheduler chooses those threads whose completion would
be the least useful to the system. One metric of utility to the system is called the value den-
sity of a thread. The Archons project has developed a scheduling policy, called the Best-Ef-
fort policy, that uses value density as a metric when shedding load. Refer to [Locke 86] for a
complete description of the Best-Effort algorithm.

The implementation of the Best-Effort policy maintains a queue of threads in deadline or-
der. As each new thread is inserted, the policy checks to see if overload has been reached.
When ovcrload is reached, the policy sheds load by removing the least valuable threads until
the system is no longer overloaded.

The Alpha Operating System Scheduler Evaluation Erperments A-21

5. Experimental Results

This chapter describes the experiments performned on the chosen scheduling policies and
their results. Justification is provided for the particular experiments that were performed, and

the results of the experiments are presented.

5.1 Experimental Design

The goal of these experiments was to develop an understanding of the behavior and per-

formance of the schedulers described in the precedirg chapter. The experiments performed
provide a broad range of quantitative information about each of the schedulers used. By vary-

ing the loading conditions and analyzing the resulting data, many different metrics could be
extracted to compare the policies.

5.1.1 Load Generation

It is possible to increase or decrease the number of threads in the application, by chang-
ing the number of balls in the scenario. Having a large number of threads tends to make the

tests more accurate since small variations in the behavior of the threads have less of an ef-
fect on the large-scale behavior of the application. With more threads it is easier to ensure

that the scheduling policy being tested always has ready threads to choose from, thus im-
proving the quality of the information extracted from the test.

The loading characteristics are also affected by the initial state of the balls and paddles.
It is possible, but in general not desirable, to cause the conditions at the start of the simula-
tion to be more or less favorable by placing the paddles farther away or closer to the balls

they are catching, increasing the velocity of the balls, etc. This type of testing was done to
analyze individual decisions made by each policy as an aid to understanding their behavior,

but is detrimental to observing long-term effects since it introduces start-up transients that
obscure the steady-state performance.

There are two ways to increase or decrease the computation time required by each thread
in the system. The first method is to change the paddle speed. Increasing the paddle speed
reduces the number of times each thread consumes a block of processor cycles. Decreasing

the paddle speed has the opposite effect. The other way to change the computation time is
to alter the movement delay. Increasing this parameter will result in increased computation
by each thread since more effort is required to move the paddle each step on its way to the
intercept point.

5.1.2 Evaluation Metrics

There are several factors which must be considered in order to make a fair comparison be-
tween scheduling policies. The different policies have implementations which may vary con-

siderably from that which may be optimally attained. Thus, it is important to factor out the
various problems that are due only to the implementation of the policy. The primary factor
which affects the apparent performance of the schedulers is the fact that some schedulers

A.22 The Alpha Operating System: Scheduler Eialuation Eperiments

may take longer to provide a thread for the application to run after the currently running
thread blocks. This effect is primarily realized in the system throughput, resulting in an ap-
parently faster application. Part of the data collected is a measure of the system throughput,

the total number of paddle movements accomplished in each minute. It is possible to utilize
this throughput measure to normalize all of the schedulers to a common measure, which was
selected to be the value to the system accomplished by the Round Robin scheduler. To de-
termine the normalized value to the system obtained by a given scheduler, it is only neces-
sary to divide by the throughput measure of the policy and multiply by the throughput mea-
sure of Round Robin. In other words, the data is interpreted as though it came from a sched-
uler which had the throughput of Round Robin, but made different decisions. This enables the
examination of the decisions made by the scheduler independent of the quality of the policy
implementation.

The time-value curve of a system activity is composed of information on how the comple-
tion value of a segment of code varies with time. In combination with the importance, it can
provide the scheduler with knowledge of how much value the system would accrue from the
computation if the activity was scheduled at a certain time. A scheduling policy should in
theory be able to determine the most valuable schedule possible from this information. How-
ever, some policies use only subsets of this information, and use the information in different
ways, and thus may create other schedules of varying worth. The aggregate value to the
system created by each scheduling policy's allocation of computing cycles is the primary met-
ric used to compare policies in this report. Thus the main criteria we will use as a metric to
compare scheduling policies is the extent to which each policy maximizes the value provided
to the system by the application. This is the logical basis on which to judge schedulers,
since a scheduling policy is intended to translate as best as possible the characteristics of
each thread into a good schedule for the system. Since the set of characteristics provided by
threads in Alpha is the completion value as a function of time, then the ideal scheduler is one
that selects the schedule that provides the greatest value. Over long periods of time, the
better policies will provide mcre value to the system than inferior ones.

The second major metric used to compare policies is the percentage of the time con-
straints met by each policy. This metric is of secondary importance since maximizing the
number of met time constraints does not necessarily maximize the value obtained for the
,vstem. Nevertheless, it may provide clues as to why different policies perform as the, do.

5.2 Behavior Analysis

To understand why each scheduling policy behaves as it does, it is helpful to examine
some specific scheduling scenarios and to analyze how each of the schedulers would respond.

The first scenario of interest is one where all the balls may be caught, but only if a certain
sequence is followed. This condition is shown in Figure 4. In this picture, ball A takes long-
er to return to the intercept level than ball B. Static Priority will fail in this case since ball B
bounces twice for every single bounce of ball A. If one vere to assign a higher priority to ball
A, ball A would always be caught first and ball B would be missed on its second bounce. If

The Alpha Operating System: Scheduler Evaluation Experiments A-23

A

/ B

Figure 4: Dynamic Priority Example

4

,

3

Figure 5: Inverted Deadline/Value Example

one were to assign a higher priority to ball B, A would be missed. Both Deadline and Best-
Effort, on the other hand, would catch ball A, then ball B twice, then ball A again. SPT would
give a higher priority to catching B, which takes less computation time, and so would work
exactly like Static Priority when the higher priority is given to ball B.

A-24 The Alpha Operating System: Scheduler Evaluation Erperirnents

/
/t

Figure 6: Simple Overload Example

Another underload scenario is shown in Figure 5. There are four balls with values 1
through 4. The value 4 ball is farthest from its intercept point and value 1 ball is the nearest.
The paddle assigned to each ball is one time unit away from its intercept point and each ball
is as many time units away from the intercept point as its value. In this case, the urgency of
each computation is the inverse of the importance of the computation (i.e., the higher the val-
ue of the ball, the less urgent it is to catch it). Static Priority will fail badly on this scenario.
It will first move to intercept the value 4 ball, thus dropping the value 1 ball. It will then
move to intercept the value 3 ball and drop the value 2 ball. Static Priority will successfully
catch the balls of value 3 and 4, but will drop those with value 1 and 2. Both Deadline and
Best-Effort will catch all of the balls in this scenario, while SPT will act in random order (all
the paddles take one time unit to move into position).

The next case of interest is one where it is not possible to catch all of the balls (Figure
6). The value 5 ball is three time units away from the intercept point, as is its paddle. The
value 3, 2 and 1 balls are also each three time units away from their respective intercept
points; but their paddles are each one time unit away from the intercept point. Static Priority
would successfully catch the value 5 ball, dropping balls of value 3, 2, and I in the process.
Best-Effort would recognize the overload situation and abort the catching of the value 5 ball
in favor of catching the value 1, 2, and 3 balls that provide more value to the system. Dead-
line would catch two of the three smaller value balls, then select randomly between moving
one time increment toward the value 5 ball (which now cannot be caught) or catching the
third small ball. SPT would, in this case, successfully catch the three small balls, because
they all require fewer computational resources to complete.

The Alpha Operating System: Scheduler Evaluation Experiments A-25

/ / /

Figure 7: Value Selection in Overload

Another interesting scenario is shown in Figure 7. This figure represents another over-
load situation. All three balls will arrive at their intercept points at the same tine (two time
units). Each of the paddles is only one time unit away from their intercept points. Both
Best-Effort and Static Priority will select the value 7 and 9 balls, while both SPT and Dead-
line will select randomly (all have the same deadline and computation time).

Finally, there is the case in which one ball is completely impossible to catch. Such a sce-
nario is shown in Figure 8 where a ball of value 3 is one unit of time from its intercept point,
while its paddle is two time units away. There is another ball of value 1 which is one unit of
time away from the intercept point, as is its paddle. Static Priority will try to catch the un-
catchable ball of value 3 while disregarding the catchable value 1 ball. Best-Effort will abort
the paddle of the value 3 ball since its deadline cannot be made, and will catch the value 1
ball. Deadline will choose randomly between the two balls (which have the same dead-
lines). SPT will catch the ball of value 1 since it requires less computation time.

These scenarios indicate that the Best-Effort policy behaves will in a variety of different
loading conditions. Unlike other policies which may perform well in a limited domain, the
Best-Effort policy uses the full information available in the time-value function specifications
to intelligently schedule tasks in both underload and overload situations.

A-26 The Alpha Operating System: Scheduler Evaluatton E periments

1
3

Figure 8: Impossible Time Constraint

5.3 Simulation Results

Several metrics for long-term performance were collected from each scheduler. The first
measure examines how sensitive each scheduler was to variations in thread importance (i.e.,
ball value). The second metric records how successful each of the scheduling policies was at
meeting the application time constraints (in terms of percentage of time constraints satis-
fied). The final indicator combines both ball value and time constraint measures to judge the
overall performance of each policy.

5.3.1 Thread Importance Sensitivity

As may be seen from the graphs of percent caught versus ball value (shown on the fol-
lowing pages), each scheduler has a characteristic form indicating the trade-offs it makes
when catching balls of different values. Round Robin, for example, has a flat graph (Figure 9)
indicating that it does not distinguish between threads based on their value. Each thread in
the system receives the same fraction of the available processor cycles. As expected, in-
creasing the paddle speed increases the application's ability to catch balls. The Deadline al-
gorithm (Figure 10) is also not responsive to ball value and shows similar behavior.

The Shortest Processing Time algorithm (Figure 11), which also disregards thread impor-
tance, shows some sharp differences between ball values. This effect is due to the particu.ar
way in which the application interacts with this scheduling policy. The amount of movement,

and thus the compute time, needed to catch a given ball often increases after the ball is
missed. The paddle needs to move farther to make the next catch, has a greater required
computation time, will thus be less likely to be scheduled, and so also less likely to catch the
ball. If, on the other hand, the paddle catches the ball, it will be closer to the intercept point
for the next catch, will require less computation time, will be more likely to be scheduled, and
will be more likely to again catch the ball. Thus, balls, once caught, are likely to continue be-
ing caught. Once dropped, they are likely to continue being dropped. Therefore each ball will
tend to either be caught well or caught poorly for most of each run. This explains why the
SPT algorithm shows such a wide variation in catching percentages with respect to ball val-
ue. Most applications do not exhibit this type of behavior.

The.Alpha Operating System. Scheduler Evaluation Erperiments A-27

100

90
0 --- 0 addle Speezd 4

0- - P addle Sp~eed 12
70 - X----K Paddle Sree&. 15

60

50

40

30 ...-.-

20 -

10 -0E

0 12 3 4 5 6 7 8
Ball Value

Figure 9: Round Robin Percent Caught

100

90

80 - 0- - Paddle .Z:eer. :

60

40 -_ E3 8

30 -

20F

10

0 1 2 3 4 5 6 7 8
Ball Value

Figure 10: Deadline Percent Caught

A-28 The Alpha Operating System: Scheduler Evaluatwon Experiments

100 0--0Paddle Srpeed 4

90 0- Paddle Speed IC
G3- Paddle Speed 112

80 x K Paddle Speed X.

70 I. .x " " /.

.. '. - b-.. /.. ,, \60

50 - X,

40

30 -

20

10

01 2 3 4 5 6 7 8
Ball Value

Figure 11: SPT Percent Caught

100
(... .

90 / /
90 Paddle Speed 4 / 'I
80 Paddle Speed IC

Paddle Speed I 2'
70 - Paddle Speed 1'/

60 / i/
/e/

50 /

30 /

30- -

20 - - . -

10 -

0 1 2 3 4 5 6 7 8
Ball Value

Figure 12: Static Priority Percent Caught

The Alpha Operating System: Scheduler Evaluanon Erperiments A-29

100

90 ..
Paddle Speed 4

80 - Paddle Speed I0)..Paddle Speed 12 .. lo-

70 Paddle Speed 12 /

60 /- -- /

50 ,.-

40 .

30 -X,"

20 "

10

0 1 2 3 4 5 6 7 8Ball Value

Figure 13: Best-Effort Percent Caught

Static Priority (Figure 12) has a very low catch rate for the small value balls, jumping to
an almost perfect rate balls of higher values. Static Priority scheduling always runs the most

important threads first. It therefore catches the high value balls (if it can), then attempts to
catch the next highest value balls, etc. Increasing the paddle speed enables the application
to catch more of the top value balls.

The characteristic curve for the Best-Effort policy (Figure 13) is smoother than those for
the other policies. Like Static Priority, Best-Effort has a very good catching rate for the high-
est value balls. However, the rate of decrease between the high value balls and the lower
value balls is more continuous. This behavior is a very important characteristic of the Best-
Effort scheduler. Instead of concentrating only on the highest value balls, it tries to catch the
combination of balls that maximizes the total value to the system. It may often be possible
to schedule the successful capture of several balls of low value in place of a single one of
higher value, and as a result provide better total value to the system. Compared to Static
Priority's insistence on catching high valued balls to the exclusion of others, this selection
can result in a considerable increase in the value obtained.

5.3.2 Meeting Application Time Constraints

One important method of comparing the schedulers is to examine how well each of them
meets the thread deadlines, i.e. what fraction of the balls are successfully caught. The ratio
of balls caught to the total number of potential catches is shown for each scheduler as a func-
tion of paddle speed in Figure 14. As expected, the ability of any scheduler to meet dead-
lines, and thus to catch balls, increases with paddle speed. It is interesting to note that the

A-30 The Alpha Operating System: Scheduler Ealuation Expertments

Deadline policy fares very poorly on this experiment. Since the system is heavily overloaded
(all percentages are <100%), Deadline scheduling may waste significant time attempting to
meet impossible time constraints. The SPT policy performs well since it concentrates on
tasks which are easily accomplished. The Best-Effort policy performs as well as or better
than any of the other poiicies because of its intelligent overload handling.

5.3.3 Maximizing Application Value

The total value metric is determined by dividing the value of the balls caught by the value
that would have been obtained if all of the balls were always caught. Figure 15 illustrates
the performance of each scheduling policy using this measure.

It is worthwhile to compare Figure 14 and Figure 15 (the two graphs are extracted from the
same experimental data). The scheduling policies that ignore thread importance-Round
Robin, Deadline, and SPT-catch almost the same percentage of balls as they do of value
(their curves are practically identical in the two graphs). The two policies that consider
thread importance-Static Priority and Best-Effort--catch more valuable balls and are shift-
ed up by approximately 10% in the graph that indicates the percentage of the total value
caught (Figure 15).

The policies that performed the worst using the value metric, Round Robin and Deadline,
are also the schedulers that did the worst job of meeting time constraints. Clearly they
achieve less value to the system simply because they catch fewer balls. The Shortest Pro-
cessing Time scheduler achieves the next highest value to the system. It performs better
than Round Robin and Deadline because it catches more balls, but it does worse than Static
Priority and Best-Effort because it ignores value. Static Priority and Best-Effort are the
most successful and are similar in performance for this particular set of experiments.

Static Priority and Best-Effort, are worthy of further consideration. One reason they per-
form well is that, unlike the other schedulers, value information plays an important part in
scheduling decisions. One might wonder why Static Priority, which does not consider time
constraints, is so successful at accruing value? The answer is found by examining how Static
Priority distributes cycles to an arbitrary mix of threads. In overload, only the highest impor-
tance threads run (excluding all others) regardless of how likely their time constraints are to
be met. In the short term, this may result in more dropped balls. If a thread's ability to meet
an individual time constraint were independent of its past history, this behavior would result
in a poor long-term performance as well. However, if expending cycles on a time constraint,
even if the constraint is not satisfied, serves to improve the chances of meeting the next time
constraint a thread establishes, then the cycles are not wasted and may benefit the system
in the long term. This effect manifests itself in this application. If a scheduler concentrates
solely on the highest value balls, some balls that could have been caught may be dropped.
However, because they are receiving the majority of the processing cycles, the high value
balls will tend to be the ones which are the easiest to catch. As a result, scheduling deci-
sions which appear to be bad based on the available information may be good in the long
term. Some applications do exhibit this type of "feedback;" however, the majority of tasks
have a greater independence between activations.

The Alpha Operating SYstemn Schedler Evaluanon Experiments A-3l

100

90
- Rcuflid Rcocin

80 - 0- stats-: Pri0rs-tv -

70 M- -nDeadline-

70"~S? - -... k I

60 A Best Effzrt

40

30 ~

20

10

0 2 4 6 8 10 12 14 16
Paddle Speed

Figure 14: Percent of Balls Caught

100

90 - Rcund Roti -

80 - Deadlz-ne .- 0 1 -

70 - X----K X P

60 - A-A Best. Eff:t - -

50 -

4 0 -

30

20

10

0 2 4 6 8 10 12 14 16
Paddle Speed

Figure 15: Percent of Value Caught

A-32 The .4lpha Operating System: Scheduler Evaluation Exper:ments

100

90-
0- S- Static Pricr;ty

80 A-A Best Effort:

70

60

50A

40

30 .----.-

20 -- " "

10

0 2 4 6 8 10 12 14 16
Paddle Speed

Figure 16: Percent of Value Caught with Random Replacement

100

90 0-- O Stat,z Prior;ty

80 A-A Best Effort

70 .

60.- -

50 -
.- ° -

40 -.

30 -

20 "

10

0 2 4 6 8 10 12 14 16
Paddle Speed

Figure 17: Percent of Value Caught with Smaller Value Variance

The Alpha Operating SYstem Scheduler Ei alua non EiPeriments A-33

To study the behavior of independent tasks, a second series of experiments was per-

formed. The application was altered so that after balls are caught or dropped they move to a
random point in the air and begin falling again. Therefore, cycles spent on an unsuccessful

catch is time poorly spent. A bad short-term decision cannot in general be converted into a

good long-term one. The results of this modification are shown in Figure 16.

Another point to consider is whether the choice of values for the eight balls has an effect
on the performance of the two schedulers that consider thread importance. The original set of

eight balls valued one through eight was replaced by three balls of value six and five of value
five. The results are shown in Fig-ure 17. The comparative performance of the Best-Effort

policy improves with this change in value distribution. The key to understanding this relative

improvement in Best-Effort's performance is the fact that the balls with the highest value

are no longer so useful to the system that focusing on them to the exclusion of others is prof-

itable.

A-34 The Alpha Operating System: Scheduler Evaluation Experiments

6. Conclusions

The best scheduler for a particular application would often be one designed precisely to
match the requirements of the system. Such a scheduler could have complete knowledge of
the application and could exploit application-specific information to achieve the best possible
performan:e. For certain low-level systems where there are few different types of activities
or where the events occurring in the system are completely predictable, custom schedulers
may be feasible. As the variety of time constraints and frequency of unexpected events in-
creases, however, it becomes more and more difficult to construct an application-specific
scheduler that will operate correctly.

Since building a custom scheduler for each application is impractical, scheduling policies
have been developed that utilize application-specified hints or requirements information to
schedule activities in the way that will most benefit the application. In general, the more in-
formation given to the scheduler, the better the scheduling decisions can be. One conse-
quence of using additional information is that scheduling decisions may become more com-
plex. It is therefore necessary to balance the complexity of the scheduling operations with
the resulting improvement in the application performance.

In the scheduling policies tested in this work, the amount of application-specified tnforma-
tion used to make scheduling decisions varied from none (Round Robin) to a complete time-
value function (Best-Effort). Predictably enough, it was the scheduler that used the most in-
formation about the application, Best-Effort, that showed the best behavior. The tests indi-
cate that the extra computation time required in the Best-Effort algorithm was small enough
to make the Best-Effort scheduling policy a good balance between performance and computa-
tional complexity.

The Alpha Operating System. Scheduler Evaluation Experiments A-35

References

[Jensen 75] Jensen, E. D.
Time-V 'alue Functions for BMD Radar Scheduling.
Technical Report, Honeywell System and Research Center. June 1975.

(Locke 861 Locke, C. D.
Best-Effort Decision Making for Real- Time Scheduling.
Ph.D. Thesis, Department of Computer Science. Carnegie-Mellon

University, May 1986.

[Northcutt 87] Northcutt, J. D.
Mechanisms for Reliable Distributed Real-Time Operating Systems:

The Alpha Kernel.
Academic Press, Boston, 1987.

[Northcutt 88a] Northcutt, J. D.
The Alpha Operating System: Requirements and Rationale.
Archons Project Technical Report #88011, Department of Computer

Science, Carnegie-Mellon University, January 1988.

[Northcutt 88b] Northcutt, J. D. and Clark, R. K.
The Alpha Operating System: Programming Model.
Archons Project Technical Report #88021, Department of Computer

Science, Carnegie Mellon University, February, 1988.

Time-Driven Scheduling of Composite

Real-Time Activities

David P. Maynard

Department of Electrical and Computer Engineering

Carnegie Mellon University

November 1, 1989

Time-Driven Scheduling of Composite Real-Time A ctivities B-i

Table of Contents

1. Introduction... B-i
1.1 Application Domain .. B-i
1.2 Related Work.. B-3
1.3 Technical Approach .. B-5

2. Computational Model ... B-6
2.1 Modeling Timeliness Requirements... B-6
2.2 Modeling Composite Activities.. B-8

3. Scheduling Techniques .. B-10

4. Evaluation Methodology .. B-12
4.1 Evaluation Metrics .. B-12
4.2 Workload Generation.. B-13

5. Research Schedule ... B-i5

6. Research Contribution .. B-16

Bibliography.. B-17

Time-Driven Scheduling of Composite Real-Time Activities B-1

1. Introduction

Previous real-time scheduling research has primarily addressed simple tasks and has not

considered that time-constrained activities may span multiple nodes in a distributed system

and may have multiple, nested timeliness requirements. This research will investigate how

limited additional information (relative to current algorithms) about the execution require-

ments of these composite real-time activities can be used to improve the quality of schedul-

ing decisions made at each node in a distributed system.

1.1 Application Domain

There are several classes of real-time systems [Bennett 88]. This work considers a

class known as supervisory real-time systems. Typical applications of this type include in-

dustrial factory automation (e.g., automobile manufacturing), platform management (e.g.,

space stations), and military command and control (e.g., air defense). These systems must

operate correctly in highly dynamic environments where requirements and resources may

vary gradually or may change suddenly without warning. Often, the applications execute on

distributed computer systems where processing nodes are physically separated to reflect the

structure of the problem or to enhance availability and survivability.

Supervisory real-time systems differ from low-level sampled data monitoring and control

systems in several significant ways. Unlike low-level systems which consist primarily of

simple periodic tasks, supervisory real-time systems manage a wide range of complex activi-

ties. These activities are characterized by the following features:

" Activities have stochastic arrival and execution times. It is often difficult or impossible
to predict when or how often activities will be initiated.

* Activities may have a variety of critical timeliness requirements including hard dead-
lines, which indicate that an activity must be completed within a specific time interval
for its result to be useful, and "softer" time constraints, which describe activities for
which the value of completing the work varies across time.

* Activities are often composed of several execution stages which may involve computa-

tion on several different nodes in the system.

" Individual activities may have multiple nested timeliness requirements imposed by dif-

ferent levels of the application environment.

We call this class of activities which may have multiple execution stages and nested timeli-

ness requirements composite activities.

B-2 Time-Dri en Scheduling of Composite Real-Time Activities

Composite Activities: An Example

Consider an automated to, factory. The factory contains several robots-some of which
are equipped for a variety of tasks and some of which are specialized for certain duties. The

movement of each robot is directed by a local, low-level control system. These low-level
controllers are, in turn, operated by a distributed supervisory real-time system that is re-

sponsible for coordinating the robots and for guiding overall production.

Among other things, the factory produces toy fire trucks. The individual components for

the trucks (chassis, body, fEre ladder, and tires) are fabricated at another site and brought to
the automated factory for assembly. The steps in assembling a truck are: 1) attaching the
ladder to the body, 2) applying glue to the chassis, 3) joining the body with the chassis, and

4) attaching the wheels. One type of robot is responsible for attaching the ladder and gluing
the body and chassis together, while a second robot is specialized for attaching the wheels.

Because of its special input/output requirements, the wheel robot is controlled by a separate

processing node.

The assembly of each fire truck is controlled by a single high-level activity in the distrib-
uted control system. In general (although it may vary with demand), the assembly of a truck
should be completed in four minutes. After directing the main assembly robot to pick up the
appropriate parts and attach the ladder, the robot is instructed to apply glue to the chassis.
It is best to let the glue to dry for 30 seconds before joining the parts. The dring time allows
the glue to become "tacky," reducing the chance of a defective bond. Because glue starts

drying as soon as it is applied, it is also important to join the body to the chassis within a

certain time. Otherwise, the truck may fall apart. While it is best if the parts are joined with-
in 60 seconds, it is acceptable to wait as long as 90 seconds. The penalty for waiting is that
more defective trucks may be produced, potentially reducing profits. If more than 90 seconds

elapse, the partially completed truck is discarded. Once the A-uck chassis is assembled, it is
passed to the second robot which attaches the wheels.

When one or more of the robots is broken or demand for the trucks is high, the assembly
timing requirements are adjusted to reduce the glue drying time and reduce the overall time

allowed for completing the assembly.

The truck assembly activity has several significant features. First, it consists of multiple
stages (i.e., attaching the ladder, applying the glue, joining the body to the chassis, and at-

taching the wheels) and involves processing on more than one node. Second, it involves a
time-constrained assembly stage (gluing and joining) which has a hard cut-off. This con-

straint, however, is not a classical hard deadline since an interval of decreasing utility pre-
cedes the cut-off time. Third, the time constraint for joining the chassis and body is nested

within a higher level timeliness requirement that specifies the total assembly time for the
truck. Finally, the system load and timeliness requirements may change because of in-

creased demand or equipment failures.

Time-Driven Scheduling of Composite Real-Tine Activities B-3

Because of the potentially complex and dynamic nature of activities and their time con-

straints, effective processor scheduling for supervisory.' real-time systems is very, difficult.

The scheduling problem is further complicated by the requirement that the systems cope

gracefully with both transient and permanent overloads caused by changes in the environ-

ment (e.g., alarm conditions) or by reductions in the available resources (e.g.. node failures).

The goals for scheduling resources under these conditions can be summarized as follows:

• When sufficient resources are available, activities should be scheduled in such a way

that their timeliness requirements are satisfied.

* When the system is overloaded, activities should be temporarily removed from the

schedule so that the timeliness requirements of activities that do execute will be satis-

fied. Further, the scheduler should choose activities to execute so that the ones select-

ed will be the most beneficial to the application.

The above goals are distinct in several ways from those often suggested for low-level re-

al-time systems. In particular, these goals consider both the timeliness requirements and

the relative value of different activities in describing how schedul:n-g dec. :n' .,hould be

made. The goals also recognize that activities with soft time constraints may, in some cir-

cumstances (e.g., alarm conditions), be more valuable to the application than those with hard

deadlines.

1.2 Related Work

Much of the previous real-time scheduling research is based on different assumptions

about the application environment and the associated scheduling requirements. Many re-

searchers have considered systems where the workload is very predictable. Other work has

concentrated on trying to guarantee hard deadlines under normal conditions-often at the ex-

pense of proper overload handling. The research which has investigated more flexible over-

load handling does not address the composite nature of activities and was not designed for

distributed environments.

A significant amount of research has explored the use static priority assignments to meet

the real-time requirements of an application. Liu and Layand [Liu 73] described a technique

known as rate monotonic schedulinq in vhich static priorities are used to schedule periodic

tasks that have hard deadlines. In [Sha 86] the technique of period transformation is sug-

gested as a method of achieving better overload behavior in these periodic systems. Lehocz-

ky, Sha, and Strosnider ([Lehoczky 87], IStrosnider 88]) have explored how server tasks

can be used in a rate monotonic environment to provide fast service for aperiodic tasks that

do not have explicit time constraints. This work has been extended in [Sprunt 88] to consid-

B-4 Time.Driven Scheduling of Composite Real- Tine .Acm vites

er aperiodic tasks with hard deadlines. Rate monotonic scheduling has also be used as the

basis for work at the University of Illinois ([Lin 871, [Liu 87], [Chung 88]), where research-

ers have considered methods for scheduling computations that may yield imprecise results.

While advances in priority scheduling have been pronising, several factors limit its use in

supervisory real-z&me systems. The static scheduling techniques require a Nignifican"

amount of a priori knowledge about task arrival rates and times. It is often not possible to

know this information in dynamic environments. The approach also does not distinguish be-

tween the timeliness requirements and the importance of individual tasks. An activity is not

necessarily urgent just because it is very important. Nor, is it very important merely be-

cause it is urgent. Because both the urgency and importance must be statically encoded into

a single value, priority-based schemes are, in general, unable to support the kind of dynamic

normal-case scheduling and overload handing that is needed in the supervisory real-time do-

main.

The second major area of real-time scheduling research has investigated methods of us-

ing explicit deadlines to schedule real-time activities. In most cases this work has only con-

sidered hard deadlines. The earliest deadline (ED) algorithm has been shown to be optimal

for uniprocessors by [Dertouzos 74]. Unfortunately, the basic ED scheduling algonthrn is

unstable under overload conditions [Conway 671. Several researchers have considered

methods of improving the overload behavior of deadline scheduling. At the University of

Massachusetts, [Ramamritham 84] has developed dynamic scheduling techniques which will

only accept a task for execution if it can be guaranteed to meet its deadline. However, the

consequence of this guarantee is that extremely important activities may be blocked by less-

important activities that have already been scheduled. To handle this problem, the seman-

tics of the guarantee have been relaxed in [Biyabani 88a] and [Biyabani 88b] to permit high-

er-priority tasks to revoke guarantees made to loer-priority ones.

Locke developed a scheduling algorithm known as the best-effort (LBE) algorithm [Locke

86] which handles overloads in a manner more consistent with the goals of supervisory real-

time systems [Jensen 85]. A Mach implementation and complexity evaluation of Locke's

original algorithm is described in [Wendorf 88]. An improved best-effort algorithm, imple-

mented for the Alpha operating system [Northcutt 88b], has been evaluated in [Trull 88]. In

related work, Clark has developed an approach to scheduling dependent real-time activities

with similar goals [Clark 881. Although previous work in this area has been very successful,

limitations still exist. In particular, previous work has not adequately considered how physi-

cal Jistnbution or nested timeliness requirements affect the scheduling problem.

Tine-Driver Sc hcduhr, , of Composite Real-Time A, tvnies B.5

Little research has been conducted to investigate the effects of physical distribution on

the scheduling of composite real-time activities. Most distributed scheduling papers de-

scribe load-sharing techniques, but never consider the possibility that a time-constrained ac-

tivity may span multiple nodes. Examples of results which fall into this category are

[Ramamritham 84], [Stankovic 84], [Stankovic 85], [Zhao 85], [Kurose 86], and [Kurose

87]. The most closely related research addresses the scheduling of groups of precedence-re-

lated tasks with hard deadlines [Cheng 86]. Cheng describes methods of synthesizing inter-

mediate time constraints known as pseudo windows to ensure that tasks in a group are

scheduled to satisfy the group's deadline. 1 In general, the pseudo window technique re-

quires that complete knowledge about the execution characteristics of all group members be

available when the first member of the group arrives. Although such extensive knowledge

does allow more intelligent scheduling decisions to be made, the system dynamics often limit

the extent to which this information is available.

Related scheduling work i the field of operations research has addressed the problem of

multistage production planning [Johnson 74]. Unfortunately, techniques such as linear pro-

gramming [Winston 87] which are often employed in these situations are not practical for on-

line scheduling.

1.3 Technical Approach

As the previous section indicates. existing research has addressed only parts of the su-

pervisory real-time scheduling problem. This work will extend the range of that coverage to

include the scheduling of composite real-time activities-that is, time-constrained activities

that may span multiple processing nodes and may have multiple nested timeliness require-

ments.

This research will be divided into three major stages:

" creation of a computational model for composite real-time activities,

" development of time-driven scheduling techniques for composite activities, and

* analysis and evaluation of the proposed techniques.

The following sections describe in greater detail the work involved and results to date in

each of these areas

This use of pseudo windows should not be confused with the case whem nested time constraints are actually

imposed by the apphcation.

B-6 Time-Driven Schedui'ng of Compostte Real-Time Acivirtes

2. Computational Model

The first stage of the research involves the development of a nex computational model

which can be used to describe the behavior and timeliness requirements of composite real-

time activities. The model must account for the physical distribution of time-constrained ac-

tivities and must specify meaningful methods for composing multiple nested timeliness re-

quirements.

2.1 Modeling Timeliness Requirements

This work uses the notion of time-value functions [Jensen 75] to specify the timeliness

requirements of activities. Time-value functions express the time-varying value to the appli-

cation of completing an activity. Some example specifications are shown in Figure 1.. Using

this model, a hard deadline (Figure la) is specified by a step function where the completion

value is a constant positive number between the request time (tr) and the deadline (tdl), and

is zero after the deadline. The glue/join activity described in the toy factory example would

have a time value 'unction similar to Figure lb, where the utility of finishing the work increas-

Value Value

t t d Time tr 2 t Time

(a) (b)

Value Value

uI I

t t a Time t t t Time

(a) (b)

Figure 1: Example Time-Value Functions

Time-Driven Scheduling of Composite Real-Time A ctviries B-7

Value
Vearlv Vmzd V ae

t IcI tc C a Time

Figure 2: Time-Value Function Specification

es (as the glue becomes tacky) until a critical time (tcl), is constant for an interval (until tc2,

when the glue begins to dry), and gradually decreases to zero afterward (when the partially

assembled truck must be discarded at ta, the abort time).

In theory, time-value functions may have arbitrary shapes. To simplify their specification

in real systems such as [Locke 86], [Tokuda 87], and [Northcutt 88bL, time-value functions

are often modeled by a set of continuous functions and reference times. In this work, time-

value functions will be specified by three reference times (tr, tcl, and tc2), and three continu-

ous functions (Vearly, V'mid, and Vlate) (see Figure 2). In the most general case, each of the

functions has the form:

V(t) = K1 + Kt + K 3 t2 + K 4eK5t

In most cases, however, this research will consider only linear functions (i.e., K3 =K4 =O).

This restriction still allows most i'nteresting time-value functions to be approximated, vet

greatly simplifies the mathematics which must be handled by the scheduler. The abort time

(ta), the time after which the activity is aborted and any exception processing is initiated, is

defined as the earliest time when Vlate = 0.

When timeliness requirements are nested, appropriate techniques of composing the time-

value functions must be developed. It is not sufficient to consider only the innermost require-

ment since that constraint may, in fact, not be the most stringent. Nor may it be appropriate

to use only the most stringent constraint when deciding on the ultimate value of an activity.

In the toy truck example, there may be no inherent value in successfully gluing the chassis

and body together if the wheels are never attached. At present, work is continuing on efforts

to identify appropriate methods of composing nested time constraints.

B-8 Time-Driven Scheduihng of Composite Real-Time Acnvities

2.2 Modeling Composite Activities

Previous time-driven scheduling research has only considered activities that remain lo-

cally executable from the time they arrive until they complete. Under these conditions, the

execution characteristics of an activity can be modeled by a sinulk statistic, the estimated

computation time (ECT). As explained in the truck assembly problem, composite real-time

activities may involve computation on several p:ncessing nodes. Because of this distribu-

tion, the total computation time will also be divided among multiple nodes. To completely de-

scribe the execution characteristics of a distributed activity, the computation time on each

node must be specified.

One useful way of modeling the distributed activities is to view them as having multiple

stages--each of which may execute on a different processing node. An activity can then be

described as a linear-connected graph of execution stages. Time constraint specifications

can be modeled by adding graph elements corresponding to the beginning and end of each

time constraint. Figure 3 illustrates how the toy truck assembly activity is modeled using

this technique. For each execution stage, the estimated computation time, ECT(n), of that

stage is specified.

ECT(IECT(2) ECT(3) ET4

Attach Attach
Ladder Apply Glue Join Pieces Wheels

Key

Execution on Node 1 Begin Time Constraint

Execution on Node 2 ,,,,,,, End Time Constraint J

Figure 3: Graph Model of Toy Truck Assembly

Time-Driven Schedulhng of Composite Real- Time A st vities B-9

Although the full generality of the graph-based model is not strictly needed to handle dis-

tributed activities, the model is useful since it can be easily extended to include general re-

source requirements and the concurrent execution of component stages of an activity.

B-1O Time-Drzven S~heduhng ffCornpos,:e Reai-Time Activities

3. Scheduling Techniques

Once the computational model has been finalized. new time-driven scheduling techniques

will be developed. These techniques will use limited information about the tirrieliness re-

quirements and execution characteristics of composite real-time activities to ensure that as

much useful work as possible is completed by the application. Under normal (i.e., non-over-

load) conditions, the algorithms will attempt to satisfy all of the system timeiiness require-

ments. When overloads occur, the algorithms will be designed tp shed load intelligently so

that activities which are scheduled will meet their time constraints and will contribute as

much value as possible to the system

The scheduling problem can be divided into three major components:

* ordering of activities,

" overload detection, and

* load shedding.

Several techniques have been suggested for ordering time-constrained activities. Both

ED and least slack (LS) ordering are known to be optimal for uniprocessors [Mok 83]. Unfor-

:unately, neither approach is optimal in the muliprocessor case. Simulation results [Locke

86] have shown, however, that ED scheduling still performs well on multiprocessors. [Stone

77] suggests that network flow algorithms can be used effectively for processor scheduling.

Still another approach handles task ordering as a planning problem where search techniques

are used to f-nd an acceptable execution order [Ramamritham 84]. These search techniques

are imperfect, but tractable. Several task ordering altematives will be considered for possi-

ble inclusion in the new scheduling algorithms. The most likely candidates irnclude ED order-

ing, and an explicit placement algorithm which allows varying levels of "greediness" to be

applied.

Overload detection relies on the use of execution time estimates to dete-mine whether

there are enough processor cycles to schedule all contending activities within their time con-

straints. In many dynamic real-time systems, this calculation is performed during the tak!k

ordering process by calculating the cumulative slack time for the processor. If the cumulative

slack for any time interval drops below zero, the processor is overloaded. The problem of

overload detection is complicated by distrbuted computations. If the distribution is not con-

sidered, the local demand for the processor will be overestimated. This exagceration could

cause "false" overload indications to be generated, potentially preventing activities from

meeting their time constraints (due to load shedding).

Time-Driven Scheduling of Composite Real-Time Activities B-11

The problem of false overloads can be ameliorated by incorporating additional knowledge

into the overload detection process. The alternative which uses the least additional execu-

tion information is one in which estimates for both local computation time (LCT) and total

computation time (TCT) are specified as part of a time constraint. In the general case, the

activity must specify LCT's for each of the nodes it may visit. The local scheduler would con-

tinue to use the TCT figure to determine the ordering of the schedule, but would use the LCT

figure when performing slack time calculations for the processor. The use of LCT and TCT

estimates should reduce the number of false overload signals. However, false indications

may still occur since LCT/TCT estimates do not specify when in an activity's execution the

processor time will be needed. If most of the required time comes late in the activity, then

more near-term (and fewer far-term) processor cycles may be available than the LCT/TCT

ratio would indicate. More accurate overload detection could be achieved if ECT's were

available for each stage of an activity's execution. However, additional processing would be

required to process the additional information. It might also be impractical or impossible to

gather such detailed execution profiles.

Load shedding in time-driven systems relies on the notion of value densix [Locke 86] to

determine which activities are likely to contribute the most to the application. Value density

measures how much value per unit of processing time will be returned to the application for

executing a particular activity. When a limited number of processor cycles are available, exe-

cuting the activities with the highest value density is likely to result in the most useful work

being accomplished. In a distributed environment, load shedding decisions are more difficult

since an activity with a relatively low value density might only require a few cycles locally

before travelling to a more lightly-loaded node where its time constraints could be satisfied.

The load shedding algorithms should be able to utilize the same types of extended execution

information (LCT, TCT) as the overload detection algorithms, although a better solutions

would like require cooperation between schedulers at different nodes.

The existence of nested timeliness requirements complicates load shedding by making it

more difficult to determine the value density. Since the value of satisfying a time constraint

may depend both on the innermost constraint and on outer-level constraints, a composition

function must be applied to determine the true potential value for the activity. Work is in

progress which will specify methods of composing time-value functions.

Research into the specific scheduling algorithms is still in its initial stages. Many of the

tough decisions will be easier to make once the computational model has been finalized and

techniques for composing nested time-value functions have been developed.

B-i2 Time-Driven 5(Sheduling of Composite Real-Time Activities

4. Evaluation Methodology

The evaluation of the proposed scheduling techniques will judge how well they satisfy the

requirements of the supervisory real-time environment. Simulation experiments will be used

to evaluate the performance of the new algorithms compared to existing methods such as

earliest deadline and Locke's best-effort approach.

Because the execution of time-driven scheduling algorithms can be costly compared to

other algorithms, scheduling overhead will be explicitly considered in the simulation experi-

ments. There are two primary techniques for estimating scheduling overhead: 1) mathemati-

cally deriving the theoretical complexity of the scheduling algorithm and 2) measuring the ac-

tual performance of a sample implementation. Both techniques yield useful results and will

be employed in this research. The complexity analysis provides worst-case information de-

scribing how the overhead changes with increasing load. Simple O(n) analysis, however,

does not reveal the magnitude of the constant and scale factors. Actually measuring the per-

formance of a sample implementation provides valuable information about these scale factors

(compared with other algorithms) and reveals how the algorithm behaves on common (i.e.,

non-worst-case) workloads.

Evaluating the proposed techniques using only one or two "real" workloads would likely

skew the results to reflect the peculiarities of the chosen systems. For this reason, a wide

range of synthetic workloads will be used to test the performance of the algorithms. Sensi-

tivity analysis will be used to measure how their behavior changes as different components

of the workload are varied.

4.1 Evaluation Metrics

Many metrics have been devised for evaluating the performance of real-time scheduling

algorithms. For time-driven systems, the most important measure of an algorithm's perfor-

mance is how much of an application's potential value is obtained using the algorithm. Since

the fraction of the maximum completion value obtained for each activity directly corresponds

to how well its time constraints have been satisfied, the value metric indicates both how well

the system time constraints have been satisfied, and to what degree the scheduler has suc-

ceeded in scheduling the most useful activities under overload conditions. Because optimal

scheduling is intractable in the systems of interest, it is not practical to compute the maxi-

mum value that could actually be garnered by a perfect scheduling algorithm. Instead, a sim-

ple upper bound on the potential value can be generated by summing the maxima of the val-

Time-Drn en Scheduling of Compos:te Real-Time Actn vites B.13

ues for the activities in a workload. This total potential value (TPV) is then compared to the

actual value obtained (4VO) to yield the percentage of value obtained (PVO) by the algorithm.

Several other metrics have been designed to measure how well an algorithim satisfies the

goals of lower-level systems and are not directly applicable to the supervisory real-time en-

vironment. However, some of thes- low-level metrics can be adjusted to provide useful in-

formation about algorithm behavior for certain workloads.

In systems where all tasks are presumed to have deadlines and are not distinguished by

value, the performance of scheduling algorithms is often judged by monitoring the percentage

of tasks which complete after their deadlines (i.e., are tardy). In these cases, the mean tardi-

ness and/or the maximum tardiness of the late tasks are often considered as well. For time-

driven systems, the percentage of tardy activities (PTA) is only relevant if it is theoretically

possible to schedule the workload being considered so that it obtains its total potential val-

ue. Under these conditions, the PTA metric can provide useful information about the behav-

ior of the algorithm. Statistics on mean tardiness and maximum tardiness do not consider

the relative importance of the late activities and, therefore, are not relevant.

Other metrics which may provide useful information for evaluating the behavior of the pro-

posed algorithms include:

" average scheduling overhead-the average time required to choose the next activity to

run, and

• number of preemptions-the total number of preemptions generated (useful for estimat-

ing context swap overhead).

4.2 Workload Generation

A synthetic workload generator will be used to construct test cases for the simulation ex-

periments. By using synthetic workloads, a wide range of application environments can be

simulated. [Woodbury 86] has investigated methods of developing workloads for distribut-

ed real-time systems. Although the computational model considered by Woodbury is more

constrained than the once presented in Section 2, the work does explore the issues which

lead to stochastic behavior of distributed activities. Other work such as [Maynard 88] will

be used to identify important characteristics of supervisory real-time applications which

should be modeled in the workloads.

Simulation experiments will be conducted while varying such factors as:

" mean number of activities,

• mean activity arrival rates,

B-14 Time-Driven Scheduling of Conposite Real-Time Activities

* mean and standard deviation of activity execution times,

o percentage of local versus remote execution times, and

. level of system "dvnamics" (i.e., how the characteristics of the workload change

across time).

Sensitivity analysis will be used to determine which workload variations have the great-

est impact on the behavior of the various algorithms. Using these results, it should be possi-

ble to characterize the types of workloads which are best handled by the proposed tech-

niques. These results will also be used to suggest techniques for tailoring the proposed al-

gorithms to more closely match certain environments.

Time-Driven Scheduling of Composite Real-Time Activities B-15

5. Research Schedule

* 8/30/89 - Thesis proposal.

0 10/31/89 - A computational model will have been developed and shown to be suitable

for modeling composite real-time activities and their timeliness requirements. Tech-

niques for using the information available from the expanded model will have been pro-

posed.

The specification of the composite activity execution model is largely complete. More

work is needed to formalize techniques for composing nested time constraints and to

identify what types of processor utilization information can be made available to the

scheduler at run time.

- 12/31/89 - Specific scheduling algorithms will have been developed. A complexity

analysis of the proposed algorithms will have also been completed.

Initial investigations have been made to identify possible scheduling techniques. Al-

though tentative, this work indicates that promising techniques do exist.

• 2/28/90 - A simulator and synthetic workload generator will have been designed and

implemented.

• 5/31/90 - Simulation experiments will have been completed. The proposed scheduling

algorithms will have been evaluated and refined to the point where final analyses can

be performed.

0 8/31/90 - Data from the simulation work will have been analyzed and a thesis describ-
ing the results of the research will have been completed.

B-16 Time-Driven Scheduling of Composite Real-Time Actz vies

6. Research Contribution

The contributions of this research can be classified into three major categories-the cre-

ation of a computational model for composite real-time activities, the development of sched-

uling techniques suitable for the supervisory real-time environment, and the analysis and

evaluation of scheduling techniques that are suitable for different ty-pes of supervisory sys-

tems.

A new computational model will be developed for describing composite real-time activi-

ties. This model will account for the physical distribution of time-constrained activities and

will specify suitable methods for composing multiple nested timeliness requirements. No ex-

isting models can adequately describe the behavior and requirements of such activities. The

computational model will be designed so that it can be easily extended to consider both gen-

eral resource requirements and the concurrent execution of component stages.

New time-driven scheduling techniques will be developed. These techniques will rely on

limited information about the timeliness requirements and execution characteristics of com-

posite real-time activities to schedule activities so that as much useful work as possible is

completed by the application. Under normal (i.e., non-overload) conditions, the algorithms

will attempt to satisfy all of the system timeliness requirements. When overloads occur, the

algorithms will be designed to shed load intelligently so that activities which are scheduled

will meet their time constraints and will contribute as much value as possible to the system.

Finally, the proposed scheduling methods will be analyzed under a wide range of loading

conditions. The performance of the new algorithms will be compared to that obtained using

existing approaches. The results of this analysis will be used to delineate the domain in

which the new techniques are applicable and to suggest methods for tailoring the algorithms

to specific types of real-time environments.

Time-Drven Scheduling of Composite Real-Time Activites B-i7

Bibliography

[Alger 86] L. S. Alger and J. H. Lala.
A Real-Time Operating System for a Nuclear Power Plant Computer.
In Proceedings Real-Time Systems Symposium, pages 244-248. IEEE

Computer Society Press, December, 1986.

[Belzile 86] C. Belzile, M. Coulas, G. H. MacEwen, and G. Marquis.
RNet: A Hard Real-Time Distributed Programming System.
In Proceedings Real-Time Systems Symposium, pages 2-13. IEEE Computer

Society Press, December, 1986.

[Biyabani 88a] S. R. Biyabani, J. A. Stankovic, and K. Ramamritham.
The Integration of Deadline and Criticalness in Hard Real-Time Scheduling.
In Proceedings Real-Time Systems Symposium, pages 152-160. IEEE

Computer Society Press, December, 1988.

[Bivabani 88b] S. Biyabani, J. A. Stankovic, and K. Rarnamritham.
The Integration of Deadline and Criticalness Requirements in Hard Real-Time

Systems.
In Abstracts of IEEE and USENIX of the Fifth Workshop on Real-Time

Software and Operating Systems, pages 12-17. IEEE Computer Society,
May, 1988.

[Bond 88] R. Bond, S. Bemrich, J. Connelly, G. Pendergrass, J. Hulsev.
Missile Guidance Processor Software Development A Case Study.
In Proceedings Real-Time Systems Symposium, pages 60-68. IEEE Computer

Society, Press, December, 1988.

[Bourne 84] D. A. Boume and M. 3. Fox.
Autonomous Manufacturing: Automating the Job-Shop.
Computer :76-86, September, 1984.

[Chang 85] H.-Y. Chang and M. Livny.
Priority in Distributed Systems.
In Proceedings Real-Time Systems Symposium, pages 123-130. IEEE

Computer Society Press, December, 1985.

[Chang 861 H.-Y. Chang and M. Livnv.
Distributed Scheduling under Deadline Constraints: a Comparison of Sender-

initiated and Receiver-initiated Approaches.
In Proceedings Real-Time Systems Symposium, pages 175-180. IEEE

Computer Society Press, December, 1986.

[Cheng 86] S. Cheng, J. A. Stankovic, and K. Ramamritham.
Dynamic Scheduling of Groups of Tasks with Precedence Constraints in

Distributed Hard Real-Time Systems.
In Proceedings Real-Time Systems Symposium, pages 166-174. IEEE

Computer Society Press, December, 1986.

B-18 Tinze-Driven Scheduhn'Q of Corn:po)sire Real-Timze Activii:es

[Cheng 87] S.-C. Cheng, J. A. Stankovic, and K. Ramamnritham.
- Scheduling Algorithms for Hard Real-Time Systems -- A Brief Survey.

Real-Time Systems Newsletter 3(2 :1-24, Summer. 1987.

[Chu 84] W.VW. Chu and K. K. Leung.
Task Response Time Model & Its Applications for Real-Time Distributed

Processing Systems.
In Proceedings Real-Time Systems Symposium, pages 225-236. IEEE

Computer Society Press, December, 1984.

[Chu 88] W. W. Chu and C. M. Sit.
Estimating Task Response Time with Contentions for Real-Time Distributed

Systems.
In Proceedings Real-Time Systems Symposium, pages 272-28 1. IEEE

Computer Society Press, December, 1988.

[Chung 88] J.-Y. Chung and J. W. S. Liu.
Algorithms for Scheduling Periodic Jobs to Minimize Average Error.
In Proceedings Real-Time Systems Symposium, pages 142-15 1. IEEE

Computer Society Press, December, 1988.

[Clark 88] P. K. Clark.
Scheduling Dependent Real-Time Activities.
Ph.D. Proposal. School of Computer Science, Carnegie Mellon University.
October, 1988

[Conway 67j R. W. Conway, W. L. Maxwell, and L. W. Miller.
Theory of Scheduling.
Addison-Wesley, 1967.

[Coulas 87] M. F. Coulas, G. H. Macewen, and G. Marquis.
RNet: A Hard Real-Time Distrbuted Programming System.
IEEE Transactions on Computers C-36(8):917-932, August, 1987.

[Daniels 86] D. C. Daniels and H. F. Wedde.
Real-Time Performance of a Completely Distributed Operating System.
In Proceedings Real-Time Systems Symposium, pages 157-163. IEEE

Computer Society Press, December, 1986.

[Davari 861 S. Davari and S. K. Dhall.
An On Line Algorithm for Real-Time Tasks Allocation.
In Proceedings Real-Time Systems Sxmposium. pages 194-200. IEEE

Computer Society Press, December, 1986.

[Davidson 89] S. Davidson, I. Lee, and V. Wolfe.
A Protocol for Timed Atomic Commitment.
In Proceedings of the 9th International Conference on Distributed Computing

Systems, pages 199-206. IEEE Computer Society Press. June, 1989.

[Dertouzos 741 M. Dertouzos.
Control Robotics: The Procedural Control of Physical Processes.
In Proceedings of the IFIP Conress, pages 807-813. IFIP, 174.

Trime-Driven Scheduling of Composite Real-Time Activitics B-19

[Dormer 86] M. D. Donner and D. H. Jameson.
A Real-Time Juggling Robot.
In Proceedings Real-Time Systems Symposium, pages 249256. IEEE

Computer Society Press. December, 1986.

[Efe 89] K. Efe and B. Groselj.
Minimizing Control Overheads in Adaptive Load Sharing.
In Proceedings of the 9th International Conference on Distributed Computing

Systems, pages 307-315. IEEE Computer Society Press, June, 1989.

[Fleisch 841 B. D. Fleisch.
Meta-Activities: Towards Coherent Distributed Jobs.
In Proceedings of the 4th International Conference on Distributed Computing

Systems, pages 566-578. IEEE Computer Society Press, May, 1984.

[Fortier 85] P. J. Fortier.
Design and Analysis of Distributed Real-Time Systems.
Intertext Publications, McGraw-Hill, 1985.

[Gabrielian 88] A. Gabrielian and M. K. Franklin.
State-Based Specification of Complex Real-Time Systems.
In Proceedings Real-Time Systems Symposium, pages 2-11. IEEE Computer

Society Press, December, 1988.

[Hong 88] K. S. Hong and J. Y-T. Leung.
On-Line Scheduling of Real-Time Tasks.
In Proceedings Real-Time Systems Symposium, pages 244-250. IEEE

Computer Society Press, December, 1988.

[Jahanian 87] F. Jahanian and A. K.-L. Mok.
A Graph-Theoretic Approach for Timing Analysis and its Implementation.
IEEE Transactions on Computers C-36(8):961-975, August, 1987.

[Jensen 75] E. D. Jensen.
Time-Value Functions for BMD Radar Schedulinc.
Technical Report, Honeywell Systems and Research Center, June, 1975.

[Jensen 85] E. D. Jensen, C. D. Locke, and H. Tokuda.
A Time-Driven Scheduling Model for Real-Time Operating Systems.
In Proceedings Real-Time Systems Symposium, pages 112-122. IEEE

Computer Societ,, Press, December, 1985.

[Johnson 77] L. A. Johnson and D. C. Montgomery.
Operations Research in Production Planninq, Scheduling. and Inventory

Control.
John Wiley & Sons, 1977.

[Kligerman 86] E. Kligerman and A. D. Stovenko.
Real-Time Euclid: A Language for Reliable Real-Time Systems.
IEEE Transactions on Software Engineering SE- 12(9):94 1-94Q, September,

1986.

B-20 Time-Driven Scheduling of Composite Real-Time Activities

[Krueger 87] P. Krueger and M. Livnv.
The Diverse Objectives of Distributed Scheduling Policies.
In Proceedings of the 7th International Conference on Distributed Computing

Systems, pages 242-249. IEEE Computer Society Press, September, 1987.

[Kurose 861 J. F. Kurose, S. Singh, and R. Chipalkarti.
A Study of Quasi-Dynamic Load Sharing in Soft Real-Time Distributed

Computer Systems.
In Proceedings Real-Time Systems Symposium, pages 201-208. IEEE

Computer Society Press, December, 1986.

[Kurose 87] J. F. Kurose and R. Chipalkatti.
Load Sharing in Soft Real-Time Distributed Computer Systems.
IEEE Transactions on Computers C-36(8):993-1000, August, 1987.

[Lee 85] I. Lee and V. Gehlot.
Language Constructs for Distributed Real-Time Programming.
In Proceedings Real-Time Systems Symposium, pages 57-66. IEEE Computer

Society Press, December, 1985.

[Lee 87] I. Lee and S. B. Davidson.
Adding Time to Synchronous Process Communications.
IEEE Transactions on Computers C-36(8):941-948, August, 1987.

[Lehoczky 87] J. P. Lehoczky, L. Sha, and J. K. Strosnider.
Enhanced Aperiodic Responsiveness in Hard Real-Time Environments.
In Proceedings Real-Time Systems Symposium, pages 261-270. IEEE

Computer Society Press, December, 1987.

[Leinbaugh 86] D. W. Leinbaugh and M.-R. Yamiru.
Guaranteed Response Times in a Distributed Hard-Real-Time Environment.
IEEE Transactions on Software Engineering SE- 12(12): 1139-1144,

December, 1986.

[Lin 87] K.-J. Lin, S. Natarajan, and J. W.-S. Liu.
Imprecise Results: Utilizing Partial Computations in Real-Time Systems.
In Proceedings Real-Time Systems Sympos!um, pages 210-217. IEEE

Computer Society Press, December, 1987.

[Lin 883 K.-J. Lin.
Expressing and Maintaining Timing Constraints in FLEX.
In Proceedings Real-Time Systems Symposium, pages 96-105. IEEE

Computer Society Press, December, 1988.

[Liu 73] C. L. Liu and J. W. Lavland.
Scheduling Algorithms for Multiprogramming in a Hard-Real-Time

Environment.
Journal of the ACM 20(l):46-61, January, 1973.

[Liu 871 J. W. S. Liu, K.-J. Lin, S. Nataraian.
Scheduli-,g Real-Time, Periodic Jobs Using Imprecise Results.
In Proceedings Real-Tune Systems Symposium, pages 252-260. IEEE

Computer Society Press, December, 1987.

Time-Driven Scheduling of Composite Real-Time Activities B-21

[Lo 87] S. P. Lo and V. D. Gligor.
A Comparative Analysis of Multiprocessor Scheduling Algorithms.
In Proceedings of the 7th Interizational Conference on Distributed Computing

Systems, pages 356-363. IEEE Computer Society Press, September, 1987.

[Locke 86] C. D. Locke.
Best-Effort Decision Making for Real- Time Scheduling.
PhD thesis, Carnegie Mellon University, May, 1986.

[Maynard 88] D. P. Maynard, R. K. Clark, J. D, Northcutt, S. E. Shipman, R. B. Kegley,
P. J. Keleher, B. A. Zinunerman, and E. D. Jensen.
The Alpha Operating System: An Example Command, Control, and Battle

Management Application.
Technical Report, Archons Project, School of Computer Science, Carnegie

Mellon University, 1988.

[McNaughton 591 R. McNaughton.
Scheduling with Deadlines and Loss Functions.
Management Science 6(1): 1-12, October, 1959.

[Mirchandaney 89]
R. Mirc- ndaney, D. Towsley, and J. A. Stankovic.
Adaptive Load Sharing in Heterogeneous Systems.
In Proceedings of the 9th International Conference on Distributed Computing

Systems, pages 298-306. IEEE Computer Society Press, June, 1989.

[Mok 83] A. K.-L. Mok.
Fundamental Design Problems of Distributed Systems for the Hard-Real-

Time Environment.
PhD thesis, Massachusetts Institute of Technology, May, 1983.

[Mok 84a] A. K. Mok.
The Design of Real-Time Programming Systems Based on Process Models.
In Proceedings Real-Time Systems Symposium, pages 5-17. IEEE Computer

Society Press, December, 1984.

[Mok 84b] A. K. Mok.
The Decomposition of Real-Time System Requirements into Process Models.
In Proceedings Real-Time Systems Symposium, pages 125-134. IEEE

Computer Society Press, December, 1984.

[Northcutt 88a] J. D. Northcutt and R. K. Clark.
The Alpha Operating System: Programming Model.
Archons Project 88021, School of Computer Science, Carnegie Mellon

University, February, 1988.

[Northcutt 88b] J. D. Northcutt and R. K. Clark.
The Alpha Operating System: Kernel Internals.
Archons Project 88051, School of Computer Science, Carnegie Mellon

University, May, 1988.

B-22 Time-Driven Scheduling of Composite Real.Time Activities

[Olson 86] R. Olson.
Realtime Response on a Message Based Multiprocessor.
In Proceedings Real-Time Systems Symposium. pages 28-35. IEEE Computer

Society Press, December, 1986.

[Ostroff 87] J. S. Ostroff and W. M. Wonham.
Modelling, Specifying, and Verifying Real-time Embedded Computer

Systems.
In Proceedings Real-Time Systems Svymposium, pages 124-132. IEEE

Computer Society Press, December, 1987.

[Ostroff 89] J. S. Ostroff.
Verifying finite state real-time discrete event processes.
In Proceedings of the 9th International Conference on Distributed Computing

Systems, pages 207-216. IEEE Computer Society Press, June, 1989.

[Peng 89] D.-T. Peng and K. G. Shin.
Static Allocation of Periodic Tasks with Precedence Constraints in Distributed

Real-Time Systems.
In Proceedings of the 9th International Conference on Distributed Computing

Systems, pages 190-198. IEEE Computer Society Press, June. 1989.

[Rajkumar 88] R. Rajkumar, L. Sha, and J. P. Lehoczky.
Real-Time Synchronization Protocols for Multiprocessors.
In Proceedings Real-Time Systems Symiosium. pages 259-269. IEEE

Computer Society Press, December, 1988.

[Ramamritham 84]
K. Ramamritham, J. A. Stankovic.
Dynamic Task Scheduling in Distributed Hard Real-Time Systems.
In Proceedings of the 4th International Conference on Distributed Computing

Systems, pages 96-107. IEEE Computer Society Press, May, 1984.

[Ramamritham 87]
K. Rarnamritham, J. A. Stankovic, and W. Zhao.
Meta-Level Control in Distributed Real-Time Systems.
In Proceedings of the 7th International Conference on Distributed Computing

Systems, pages 10-17. IEEE Computer Society Press, September, 1987.

[Ruschitzka 77] M. Ruschitzka and R. S. Fabry.
A Unifying Approach to Scheduling.
Communications of the ACM 20(7):469-477, July, 1977.

[Sahni 79] S. Sahni and Y. Cho.
Nearly On Line Scheduling of a Uniform Processor System with Release

Times.
SIAM Journal on Computing 8(2):275-285, May, 1979.

[Saponas 86] T. G. Saponas.
A Real-Time Distributed Processing System.
In Proceedings Real-Time Systems Symposium, pages 36-43. IEEE Computer

Society Press, December, 1986.

Time-Driven Scheduling of Composite Real-Time Activities B-23

[Schwan 86) K. Schwan, W. Bo, and P. Gopinath.
A High-Performance, Object-Based Operating System for Real-Time,

Robotics Applications.
In Proceedings Real-Time Systems Symposium, pages 147-156. IEEE

Computer Society Press, December, 1986.

[Schwan 87] K. Schwan, P. Gopinath, and W. Bo.
CHAOS - Kernel Support for Objects in the Real-Time Domain.
IEEE Transactions on Computers C-36(8):904-916, August, 1987.

[Sha 83] L. Sha, E. D. Jensen, K. F. Rashid, and J. D. Northcutt.
Distributed Co-operating Processes and Tra-sactions.
In Y. Parker and J -P. Verjus (editor), Distributed Computing Systems

Synchronization, Control, and Communication, pages 23-50. Academic
Press, 1983.

[Sha 86] L. Sha, J. P. Lehoczky, and R. Rajkumar.
Solutions for Some Practical Problems in Prioritized Preemptive Scheduling.
In Proceedings Real-Time Systems Symposium, pages 181-191. IEEE

Computer Society Press, December, 1986.

[Sprunt 88a] B. Sprunt, J. Lehoczky, and L. Sha.
Exploiting Unused Periodic Time for Apeiodic Service Using the Extended

Priority Exchange Algorithm.
In Proceedings Real-Time Systems Symposium, pages 251-258. IEEE

Computer Society Press, December, 1988.

(Sprunt 88b] B. Sprunt.
Aperiodic Task Scheduling for Hard Real-Time Systems.
Ph.D. Proposal, Department of Ele:trical and Computer Engineering,

Carnegie Mellon University.
November, 1988

[Stankovic 84] J. A. Stankovic and I. S. Sidhu.
An Adaptive Bidding Algorithm for Processes, Clusters and Distributed

Groups.
In Proceedings of the 4th International Conference on Distributed Computing

Systems, pages 49-59. IEEE Computer Society Press, May'. 198,.

[Stankovic 85] J. A. Stankovic, K Ramamritham, and S. Cheng.
Evaluation of a Flexible Task Scheduling Algorithm for Distributed Hard

Real-Time Systems.
IEEE Transactions on Computers C-34(12):1130-1143, December, 1985.

[Stankovic 87] J. A. Stankovic and K. Ramamritham.
The Design of the Spring Kernel.
In Proceedings Real-Time Systems Symposium, pages 146-157. IEEE

Computer Society Press, December, 1987.

[Stone 77] H. S. Stone.
Multiprocessor Scheduling with the Aid of Network Flo", Algorithms.
IEEE Transactions on Software Engineering SE-3(1):85-93, January, 1977.

B-24 Time-Driven Scheduling of Composite Real-Time Activities

[Strosnider 88] .;. K. Strosnider.
Highly Responsive Real-Time Token Rings.
PhD thesis, Department of Electrical and Computer Engineering, Carnegie

Mellon University, August, 1988.

[Thurber 73] K. J. Thurber and L. A. Jack.
Time-Driven Scheduling.
In Digest of Papers COMPCON73, pages 181-184. IEEE Computer Society

Press, February, 1973.

[Tokuda 871 H. Tokuda, J. W. Wendorf, H.-Y. Wang.
Implementation of a Time-Driven Scheduler for Real-Time Operating

Systems.
In Proceedings Real-Time Systems Symposium, pages 271-280. IEEE

Computer Society Press, December, 1987.

[Tokuda 88] H. Tokuda and M. Kotera.
A Real-Time Tool Set for the ARTS Kernel.
In Proceedings Real-Time Systems Symposium, pages 289-299. IEEE

Computer Society Press, December, 1988.

[Trull 88] J. E. Trull, J. D. Northcutt, R. K. Clark, S. E. Shipman, D. P. Maynard, and
D. C. Lindsay.
An Evaluation of the Alpha Real-Time Scheduling Policies.
Archons Project 88102, School of Computer Science, Carnegie Mellon

University, October, 1988.

[Wendorf 881 J. W. Wendorf.
Implementation and Evaluation of a Time-Driven Scheduling Processor.
In Proceedings Real-Time Systems Symposium, pages 172-180. IEEE

Computer Society Press, December, 1988.

[Winston 87] W. L. Winston
Operations Research: Applications and Algorithms.
PWS Publishers, 1987.

[Woodbury 86] M. H. Woodbury.
Analysis of the Execution Time of Real-Time Tasks.
In Proceedings Real-Time Systems Symposium. pages 89-96. IEEE Computer

Society Press, December, 1986.

[Zhao 85] W. Zhao and K: Ramamritham.
Distributed Scheduling using Bidding and Focused Addressing.
In Proceedings Real-Time Systems Symposium, pages 103-111. IEEE

Computer Society Press, December, 1985.

[Zhao 87] W. Zhao, K. Ramamritham, and J. A. Stankovic.
Preemptive Scheduling Under Time and Resource Constraints.
IEEE Transactions on Computers C-36(8):949-960, August, 1987.

Scheduling Dependent

Real-Time Activities

Raymond K. Clark

School of Computer Science

Carnegie Mellon Universiy

February 6, 1990

Scheduling Dependeru Real-Time Act, vities C-i

Table of Contents

1. Introduction C-I
1.1. Problem Definition C-2

1.1.1, Dependencies C-3
1.1.2. Real-Time Systems C-4

1.2. Simple and Complex Schedulers C-6
1.3. Scheduling Example C-9
1.4. Motivation for the Model C-10

1.4.1. Accrued Value C-10
1.4.2. Time-Value Functions C-13

1.5. Technical Approach C-14
1.5.1. Define Model C-14
1.5.2. Devise Algorithms C-14
1.Z.3. Prove Properties Analytically C-15
1.5.4. Simulate Algorithm C-15

2. The Scheduling Model C-17

2.1. Informal Model and Rationale C-17
2.1.1. Applications, Activities, and Phases C-17
2.1.2. Shared Resources C-18
2.1.3. Phase Preemption C-18
2.1.4. Phase Abortion C-19
2.1.5. Events C.19
2.1.6. Histories C-20
2.1.7. Scheduling Automata C-21

2.1.7.1. General Structure C-21
2.1.7.2. Specific Scheduling Automata C-23

2.2. Assumptions and Restrictions of Model C-24
2.3. Formal Model C-24

2.3.1. Notation and Definitions C-24
2.3.2. The General Scheduling Automaton Frameork (GSAF) C-26

2.3.2.1. Applications and Activities C-26
23.2.2. Events and Histories C-26
2.3.2.3. Operations C-26
2-3.2.4. Computational Phases of Activities C-28
2.3.2.5. Shared Resources C-28
2.3.2.6. Phase Preemption and Resumption C-28
2.3.2.7. Event Terminology and Notation C.28
2-3.2.8. Definitions and Properties of Histories C-29
2-3.2.9. Automaton State Components C-30
2-3.2.10. Operations Accepted by GSAF with Preconditions and Postconditions C-33
2.3.2.11. Active Phase Selection C-36

2.3-3. Notes C-37
2.3.3.1. Manifestation of Assumptions and Restrictions C-37
2-3.3.2. Manifestation of Interrupts C-38

C-ii Scheduling Dependent Real-Time Activities

2-3.3.3. Atomic Nature of 'Request-Phase' Events C-38
2.4. Observations on the Model C-38

3. The DASA Algorithm C-41

3.1. Dependent Activity Scheduling Algorithm C-41
3.1.1. Rationale for Heuristics C-41
3.1.2. The DASA Algorithm C-42
3.1.3. The DASA Algorithm: Dependency Scheduling C-42
3.1.4. The DASA Algorithm: Deadlock Resolution C-44

3.2. Formal Definition of DASA C-44
32.1. The Formal Definition C-44

3.2.1.1. DASA Automaton State Components C-44
3.2.1.2. Operations Accepted by DASA Automaton C.46
3.2.1.3. 'SelectPhase' Function for DASA Automaton C-52

3.2.2. Observations on the Definition C-57
3.2.2.1. Manifestation of Desirable Properties C-57
3.2.2.2. Nondeterminism in Definition C-58
3.2.2.3. Explicit Appearance of Time C-59

3.3. Scheduling Example Revisited C-59

4. Analytic Results C-61
4.1. Requirements for Scheduling Algorithms C-61
4.2. Strategy for Demonstrating Requirement Satisfaction C-62
4.3. Proofs of Properties C-62

4.3.1. Algorithm Correctness C-63
4.3.1.1. Proof: Selected Phases May Execute Immediately C-63

4-3.2. Algorithm Value C-64
4.3.2.1. LBESA Scheduling Automaton C-64
4-3.2.2. DASA/.N-D Scheduling Automaton C-68
4-3.2.3. Proof: If No Overloads, c{DASA} and LBESA Are Equivalent C-72
4.3.2.4. Proof: With Overloads, DASA May Exceed LBESA C-76

4.3.3. Algorithm Tractability C.106
4.3.3.1. Procedural Version of DASA C-106
4.3.3.2. Proof: Procedural Version of DASA Is Polynomial in Space and Time C-110

4.4. Notes on Algorithm C-112
4.4.1. Unbounded Value Density Growth C-112
4.4.2. Idle Intervals During Overload C-113
4.4-3. Cleverness and System Dynamics C-115

5. Simulation Results C-i
5.1. Simulator Design and Implementation C.117

5.1.1. Requirements C-117
5.1.2. Design C- 118

5.1.2.1. Activities and the Activity Generator C.118
5.1.2.2. Integrated Scheduler C-119

5.1.3. Implementation C-120
5.1.3.1. Approach: Build from Scratch or Adapt an Existing Simulator C-120
5.1.3.2. Source of DASA Implementation C-121
5.1.3.3. Single Scheduler for Simulation C.121
5.1.3.4. Simulator Display Messages C-121
5.1.3.5. Modifications C-122

5.2. Evaluation of DASA Decisions C -123
5.2.1. Methods of Evaluation C- 123

5.2.1.1. Execute Existing Applications C.123
5.2.1.2. Modifying or Reimplementing Existing Applications C-125
52.1.3. Modeling Existing Applications C- 125

Scheduling Dependent Real-Time Activities C- iii

5.2.1.4. Simulating the Execution of a Parameterized Application C-125
5.2.2. Workload Selection C-126
5.2.3. Examination of DASA Behavior C-127

5.2.3.1. Workload Parameters and Metrics C-127
5.2.3.2. Scheduler Performance Analysis C-129

5.3. Interpreting Simulation Results for Specific Applications C-138
5.3.1. Some Interesting Applications C-138

5.3.1.1. Telephone Switching C-139
5.3.1.2. Process Control: A Steel Mill C-140

6. Related Work and Current Practice C-143
6.1. Priority-Based Scheduling C-143
6.2. Deadline-Based Scheduling C-144
6.3. Other Related Work C-146

Appendix A. The General Scheduling Automaton Framework C-151
Appendix B. Derivation of DASA/ND Scheduling Automaton C-157

C- iv Scheduling Dependent Real-Time Activities

List of Figures

Figure 1-1: Examples of Time-Value Functions C-8
Figure 1-2: Execution Profiles for Priority and Deadline Schedulers C-11
Figure 2-1: Format of Scheduler Events C-20
Figure 2-2: An Observer Monitoring the Scheduler Interface C-21
Figure 2-3: Scheduling Automaton Structure C-22
Figure 2-4: Operation Types and Originators C-27
Figure 2-5: State Components of General Scheduling Automaton Framework C-31
Figure 2-6: Operations Accepted by General Scheduling Automaton C-34
Figure 2-7: Organizations of Scheduling Functions C-39
Figure 3-1: Simplified Procedural Definition of DASA Scheduling Algorithm C-43
Figure 3-2: State Components of DASA Scheduling Automaton C-45
Figure 3-3: 'RequestPhase' Operation Accepted by DASA Scheduling C-47

Automaton
Figure 3-4: Other Phase Operations Accepted by DASA Scheduling Automaton C-48
Figure 3-5: Resource Operations Accepted by DASA Scheduling Automaton C-49
Figure 3-6: Functional Form of DASA Algorithm C-54
Figure 3-7: Execution Profiles for DASA Scheduler with and without Aborts C-60
Figure 4-1: State Components of LBESA Scheduling Automaton C-65
Figure 4-2: Operations Accepted by LBESA Scheduling Automaton C-66
Figure 4-3: Functional Form of LBESA Algorithm C-67
Figure 4-4: State Components of DASA/ND Scheduling Automaton C-69
Figure 4-5: Operations Accepted by DASA/ND Scheduling Automaton C-70
Figure 4-6: Functional Form of DASA/ND Algorithm C-71
Figure 4-7: Histories Accepted by LBESA Beginning With E1 .E2 E3 C-105
Figure 4-8: Procedural Definition of DASA Scheduling Algorithm C-107
Figure 5-1: Logical Structure of Simulator C-119
Figure 5-2: Average Scheduler Performance with No Shared Resources C-130
Figure 5-3: Average Scheduler Performance with One Shared Resource C-131
Figure 5-4: Average Scheduler Performance with Five Shared Resources C-132
Figure 5-5: Scheduler Performance Range with No Shared Resources C-135
Figure 5-6: Scheduler Performance Range with One Shared Resource C-136
Figure 5-7: Scheduler Performance Range with Five Shared Resources C-137

Scheduling Dependent Real-Time Activities C-1

Chapter 1

Introduction

This is a draft of a doctoral dissertation. The work presented is

continuing. The material contained in this draft will be edited, and

possibly augmented, to produce the final version of the dissertation.

Real-time applications are typically composed of a number of cooperating activities, each contributing

toward the overall goals of the application. The physical system being controlled dictates that these

activities must execute certain computations within specific time intervals. For instance, safe operating

practices may dictate that an activity scheduled in response to an alarm condition must complete execution

within several milliseconds of the receipt of the alarm signal.

Real-time applications usually contain more activities that must be executed than there are processors on

which to execute them. Consequently, several activities must share a single processor, and the question of

bow to schedule the activities for any specific processor - that is, deciding which activity should be run

next on the processor - must be answered. Necessarily. the prime concern in making scheduling

decisions in real-time systems is satisfying the timing constraints placed on each individual activity,

thereby satisfying the timing constraints placed on the entire application.

One factor significantly complicates the scheduling problem: the activities to be scheduled are not
independent. Rather, the activities share data, execute mutually exclusive pieces of code, called critical

sections [Peterson 85]. and send signals to one another. All of these interactions can be modeled as
contention for resources that may not be shared. That is, once an activity has gained access to a shared

resource, then no other activity can gain access to it until the first activity has released it. Any activity that

is waiting for access to a resource currently held by another activity is said to depend on that activity, and a

dependency relationship is said to exist between them. Dependency relationships are able to encompass

both precedence constraints, which express acceptable execution orderings of activities, and resource

conflicts, which result from multiple concurrent requests for shared resources.

No existing scheduling algorithm solves the problem of scheduling a number of activities with dynamic

dependency relationships in a way that is suitable for real-time systems. This thesis addresses that

problem. The resulting work provides an effective scheduling algorithm, a formal model to facilitate the

analytic proof of properties of that algorithm, and simulation results that demonstrate the utility of the

algorithm for real-time applications.

C-2 Scheduling Dependent Real-Time Activities

1.1. Problem Definition

A real-time system consists of a set of cooperating, sequential activities. These activities may be Mach

threads [Mach 86], Alpha threads [Northcutt 87], UNIX processes [Ritchie 74], or any other abstraction

known to the operating system that embodies action in a computer.

These activities interact by means of a set of shared resources. Examples of resources are: data objects,

critical code sections, and signals. Any given resource may be used by only one activity at a time. If

activity A1 is accessing a resource when activity A2 requests access to the same resource, A, must be denied

access until A1 has released the resource. Here, activity A, depends on activity A1 since it cannot resume

its execution until A, has released the resource.

We assume that activities can be preempted at any time. That is, at any time, the activity that is currently

being executed by the processor may be suspended. Later, it may either be resumed or aborted, or it may

never be executed again. If the activity is resumed, it will continue execution at the point at which it was

interrupted. If it is aborted, the resources it holds will be returned to a consistent state and released.

Of course, the preemption of an executing activity, which is a manipulation of a computing abstraction,

does not preempt the physical process that the activity is morutoring and controlling. Regardless of the

execution state of the corresponding computer activity, the physical process continues to exist and,

possibly, to change'.

We also assume that scheduling decisions must be performed on-line - that is, they cannot be

determined in advance due to the dynamic nature of the systems of interest. For instance, while the

scheduler knows about the current activities, it does not know their resource requirements (that is, which

resources will be needed, for how long, and in what order)2. Furthermore, new activities may be created

without warning - perhaps in response to external events. Since the set of activities to be scheduled may

change over time, as may their dependency relationships, the scheduler must examine the activities to be

scheduled in an on-line fashion.

[Ullman 75] demonstrated that the general preemptive scheduling problem is NP-complete, implying that

tractable scheduling algorithms in even fairly simple systems cannot be optimal in all cases. Instead, they

are designed to exhibit properties that seem likely to result in desirable behavior. As will be shown, our

algonthm possesses a number of promising properties with respect to real-time systems.

'Furthcrmore, the concept of an aborted computation is somewhat different in a real-time system than it is in other applications. In
any setting, aborting an activity should result in returnng the data items modifled by that acutviry to a consistent state. However. in a
real-nie system not all of the actions of the activity ae nullified by restonng consistent data values. Changes made in the physical
world by rneans of computer-controlled actuators may have to be nullified Opening a valve, for example. may have had an effect in

the physical world that cannot be undone by sinply closing the valve once again. In such cases, further compensatory actions may be

required.

2For specific. restncted applications, it may be possible to know some or all of this infornatuon in advance; but. in general. it is

impossible.

Scheduling Dependent Real-Time Activities C-3

1.1.1. Dependencies

As defined earlier, activity A1 depends on activity A, if activity A1 cannot resume execution until A, has

taken some action. For example:
1. several activities access a shared region of memory and access is arbitrated by a lock: when

one activity holds the lock when another activity requests it, the requesting activity is blocked
and depends on the first;

2. similarly, locks may be used to protect devices and sections of code, this allows the
implementation of critical sections, for instance. in this case, whenever one activity is blocked
while another activity is executing a critical section, the blocked activity depends on the
executing activity;

3. precedence constraints, which impose partial orderings on the execution of activities. may be
implemented by means of signals between activities: an activity that must complete a
computation before another activity can begin, for instance. signals the second activity when
it is done; the signal indicates that the second activity can resume execution notice that the
second activity depends on the first while it is blocked waiting on the arrival of the signal.

These dependencies clearly have an effect on scheduling. A number of activities may be blocked due to

dependencies on other activities, but their resource needs are real and should be taken into account insofar

as possible by the scheduler. However, in a typical operating system, if an activity is blocked, its

requirements are not considered by the scheduler. As a result, important activities may be ignored by the

scheduler. In particular, in a real-time system, activities that have pressing time constraints may be ignored

because they are blocked due to dependency relationships.

A classic example of this type of behavior exists in the context of static priority scheduling

systems [Peterson 85]. The most important activities are assigned high priorities, while less important

activities are assigned low priorities 3. Suppose that a low priority activity is executing a critical section

when a new event makes a medium priority activity ready to run. A priority scheduler would preempt the

low priority activity immediately, while it was still executing its critical code4 . If a high priority activity

subsequently became ready to run, it would preempt the medium priority activity. Unfortunately, if the

high priority activity were to attempt to execute a critical code section, it would be blocked and the medium

priority activity would resume execution regardless of the relative urgency of their respective time

constraints.

Another example, similar to the one just presented, will be ey.amined more closely in a later section of

this thesis.

A model that keeps track of blocked activities and the reason that each activity wZ suspended can cover

all of the scenarios that have been mentioned so far. Specifically, acuvities that share data can coordinate

3Note that there is no inhermnt correlatuon between an activity's pnonty and the urgenc) of its urie constraLnL This is a key
problem with static pnority scheduLers.

SSomc systems prevenit preemption at these times. while many do not [KB 84. Bach 86]. But even systems that prevent preemption

suffer from other problems- for example, they have longer, potentially unbounded, response times, and the-. lose mformation by
descnbing an activity by a single number. its pnonty. This ater point will be elaborated in later sections of this document.

C-4 Scheduling Dependent Real-Time Activities

access to that data by means of a lock manager. If a lock request is granted, then the data may be accessed.

If a lock cannot be granted immediately, the requesting activity is blocked and becomes dependent on the

activity currently holding the lock.

In the case of critical sections, permission to execute a critical section can be arbitrated by semaphores.

When an activity executes a P operation to request permission to execute a critical section, the activity

either begins executing the critical section immediately, or it is blocked because another activity is already

executing that critical section. In the latter case, the blocked activity is dependent on the completion of the

activity executing its critical section. Similar dependencies also result from more general uses of

semaphores.

Finally, signals between activities can often be implemented using a semaphore. The signal onginator

issues a V operation. enabling the signal receiver to continue execution when it does a P operation to detect

whether the signal has been sent yet. If the V precedes the P, then the signal was sent before the receiver

looked for it, and the receiver is allowed to continue. Otherwise, the sig W1 receiver must wait until the

signaller has issued the signal. At that time, the receiver is blocked and its further execution depends on the

continued progress of the activity that will send the signal.

In each case, the scheduler can acquire the information it needs to construct a complete picture of the

dependencies in the system. Conversely, since this information is available, this thesis applies to a wide

range of applications and systems in which these types of dependencies occur.

1.1.2. Real-Time Systems

Despite common definitions that refer to artifacts such as interruptability in the kernel, interrupt latency,

and context swap tames [Rauch-Hindin 87), real-time systems are fundamentally concerned with carrying

out activities according to taming constraints imposed by an application - that is, the external world. The

timing constraints imposed by the external world imply that the time at which an activity is performed is

just as important as the correctness of the computation being performed. Note that a faster computer that

executes activities in an unfortunate order might be less "real-time" than a slower computer that executes

the activities in a more advantageous order.

There are several classes of real-time sy'v'ms [Bennett 88]. Low-level real-time systems are typified by

loop control applications, where computers interrogate sensors, perform a fixed set of calculations on the

sampled data, along with other state information, and control a group of actuators based on the results of

the calculations. The activities that implement these applications are often executed periodically -

sometimes because the sensors produce data periodically (e.g., radar) and sometimes because the control

models on which the systems are based require periodicity.

Often, several of these low-level real-time systems are monitored and controlled by a higher level

real-time system, called a supervisory control s-.stem. For supervisory control systems, the application

events that trigger activity are typically not penodic; rather, they occur stochastically - for example, in

Scheduling Dependent Real-Time Activities C-5

response to an alarm condition or to indicate the completion of a low-level sequence of operations. These

events represent significant changes in the physical world and must be handled by the supervisory control

system in a timely manner. So, just like low-level real-time systems. supervisory control systems have

physically derived time constraints; and, in fact, meeting these time constraints is just as critical as it is in

low-level systems.

In addition to monitoring and directing the low-level real-time systems, supervisory control systems

perform strategic planning functions - that is, they determine how to coordinate the actions of the

lower-level systems to meet the application's objectives - and they receive direction from higher level

management information systems. Typically. this information would include the specific objectives for the

supervisory control application (for example. to produce the goods that fill a given set of orders during the

current shift). Although supervisory control activities cooperate to provide their services, they still contend

for access to shared system and application resources.

Unfortunately, the policies that are prevalent in non-real-time systems to resolve such contention are

inappropriate, and may in fact be counterproductive, in real-time systems. For instance, in time-sharing

systems, fairness is desired and is obtained by, among other things, using FIFO queue disciplines and

round-robin schedulers [Peterson 85]. This approach reflects the belief that all activities are equally

significant. However, in real-time systems this is clearly not the case - some activities, and hence, some

time constraints, are decidedly more significant than others. In fact, while failing to satisfy some time

constraints may have no adverse effect on the physical process or platform being controlled, failing to

satisfy others can have catastrophic effects. A few examples will illustrate the varying significance that

may be attached to meeting specific time constraints.

First of all, consider a real-time supervisory control system in a process control setting - a furnace and a

continuous caster in a steel mill. Molten steel of a specific chemistry is created from iron. scrap, and

additional materials in the furnace. When the metal in the furnace is ready to be converted into slabs of

solid steel, the molten metal is poured into a large ladle, transported to the caster, poured into the caster,

and cast into a long, continuous slab that is subsequently cut into individual slabs of appropriate length.

When the metal is originally poured into the caster's "mold," it is liquid. It cools in the "mold" and is solid

when it emerges, ready to be cut. Several low-level real-time systems directly control the furnace, the

caster, and several related pieces of equipment. These systems are monitored, controlled and coordinated

by a supervisory control system.

In this setting, there are several types of supervisory control time con-straints that can be examined

Roughly speaking, they fall into three classes: (a) tim,- constraints that, if missed, will result in potential

loss of life and property (e.g., due to liquid steel spilling over the area); (b) time constraints imposed by the

physical world that have financial penalties if they are missed (e.g., losing quality control statistics for

products, resulting in potentially unusable products); and (c) time constraints that are not physically based

and result only in inconvenience if they are missed (e.g., operator display requests).

Military systems also provide examples of the difference in importance between various time constraints.

C-6 Scheduling Dependent Real-Time Activities

For a fighter plane, for instance, the most importance activities are those that serve to keep the plane in the

air and the pilot alive; the activities that control weapons are less important, although, obviously, they are

still of great concern. On the other hand, aboard a ship, which will float stably without constant control, the

activities in charge of the defensive weapons systems may well be more important than those that steer the

ship.

The preceding examples demonstrate that there are a number of time constraints that an application

declares and that there are significant differences in kind among the activities expressing those time

constraints. It makes sense to talk about failing to satisfy time constraints in a dynamic system because

transient, and even permanent, increases in resource demands are possible. Some difficult questions, then,

involve detecting these demand peaks and deciding which time constraints should be satisfied and which

should not.

One final, critical observation should be made. Notice in the examples above that, although each activity

was operating under a time constraint, there was a classification of its relative importance (compared to

other activities) that was independent of the time constraint. That is, there was no inherent correlption

between the activity's urgency, which was captured by its time constraint, and its importance. A criically

important activity may require little computation time and may have a very loose time constraint (relatively

speaking). In that case, it is certainly not an urgent activity, although it is an important activity.

Conversely, a relatively unimportant activity may have a time constraint that is very tight. Therefore, it is

fairly urgent even though it is not very important in the global scneme of things. Many schedulers are able

to deal with an activity's importance (e.g., priority schedulers [Peterson 85]) or its urgency (e.g., deadline

schedulers [Conway 67]), but few attempt to distinguish between these two attributes or to use all of the

information that is captured in both of them.

1.2. Simple and Complex Schedulers

Two distinct approaches may be taken in designing and constructing a scheduler. On one hand, a

minimal scheduler can be provided. The scheduling may be list-driven, like the rate group schedulers used

by cyclic executives [GD 80. Stadick 83, MacLaren 80]; or it may employ a very simple algorithm, like a

priority scheduler. Such approaches impose a low system overhead. This may be entirely appropriate

when the goal is to maximize system throughput or to support a simple application structure so that

properties (such as worst case load behavior) can be demonstrated, but it is not obviously the best approach

for systems where the goal is to satisfy as many time constraints as possible or obtain the highest

application-specified value as possible. Furthermore, minimal schedulers may have limited applicability,

as evidenced by the fact that they are already stretched to the limit in large, dynamic real-time applications.

Alternatively, a complex scheduler may be used. In this case, application activities tell the scheduler their

individual needs and the scheduler attempts to satisfy them, making decisions based on global information

that the application does not possess. The more complete and accurate the information, the better the job

Scheduling Dependent Real-Time Activities C-7

that the scheduler can do in managing resources 5 ; and processor cycles, of course, are one particularly

important resource.

This thesis explores the latter philosophy by allowing the scheduler to use more information than usual in

order to do a better job of scheduling for real-time systems. There are two major points that must be

demonstrated to verify the quality of the scheduling: first of all, the individual scheduling decisions must be

good (i.e., show that the "right" activity was selected for execution); and secondly, the performance penalty

paid for employing a more expensive scheduling algorithm must be more than offset by improved

scheduling from the point of view of the application (i.e., show that the scheduler can make better use of

the resources required to make the scheduling decisions than the application can). Of course, not every

application requires a complex scheduler, but some do, and this thesis explores the use of complex

schedulers to support those applications.

The previous discussion has focused on time constraints without elaborating on the precise definition of

these constraints. The term has deliberately been used to capture the general notion that real-time

computations must satisfy certain timing requirements. We now introduce a formal method to describe

time constraints and introduce some additional terminology. Each activity in a real-time application is

composed of a sequence of disjoint computational phases, also known simply as phases. The application

as a whole makes progress when its component activities make progress; and each activity makes progress

by completing its computational phases. Therefore, the completion of a computational phase marks

measurable progress for the application, and this progress is expressed in terms of value units. Associated

with each phase, then, is a time-value function [Jensen 75] that specifies that phase's time constraint - it

irdicates the value acquired by the application for completing the phase as a function of time.

The shape of the time-value function is arbitrary, and Figure 1-1 shows a few examples. Figure 1-1(a)

shows a step function of height v. In this case, completing the computational phase by time tdt yields value

v, while completing it at any later time yields no value. Figure 1-1(b) shows a situation where the cutoff in

value is not as sharp. Prior to time t., the value associated with completing the computation is again v.

However, following that time, the value decreases smoottly until, once again, a point is reached after

which no value is gained by completing the phase. Finally, Figure 1-1(c) corresponds to a phase that must

complete within a certain interval in order to acquire a non-zero value for the application. Although sharp

transitions are shown at both t., and tc2, more gradual transitions - such as a parabola - could also be

used. Finally, the times at which there are sharp changes in time-value functions are known as critical

times. Times tdl, tc , 1C], and tc2 are all critical times.

The simple step function shown in Figure 1-1(a) illusrates several key ideas and allows the introduction

of some important terminology. First of all, time t d/ is referred to as a deadline since it represents the last

instant at which the phase can complete and still make a non-trivial contribution to the accrued value for

'bmproved scheduling can also be obtained by devoting morm resources to analyzing a fired amount of .cheduling information.
Although the main thrust of this thesis is to study the use of more information than usual, the algonthm to be studied also requires
significant resourmes for the scheduler. The resulting implications will be discussed later in the document

C-8 Scheduling Dependent Real-Time Activitie

Value Value

V

0
Time Timet1 t

(a) (b)

Value

V -

Ti.me

(C)

Figure 1-1: Examples of Time-Value Functions

the application. Valu,; v is called the importance of the phase. If every time-value function were a

step-function and all of the step functions had the same height (importance). then each phase that was

completed would make an identical contribution to the progress of the application and an appropriate

scheduling strategy would complete as many phases as possible prior to their respective deadlines. If,

however, different phases were to have different importances. then they would make different contributions

to the value accrued by the application and the scheduling strategy that would maximize that value would

be different. Considered over the lifetime of an application, a greater accrued value represents a more

successful appplication.

If resource demands, including those for processor cycles, are sufficiently low, then all activities can be

scheduled, thereby accruing a large value for the application. However, in the event that it is impossible to

satisfy all of fe activities' resource demands, an overload exists. In this case, some subset of the activities

will meet their time constraints, while others will not, resulting in a lower accrued value for the application.

In an overload situation, the scheduler should maximite the value accrued by the application.

With an understanding of the simple step function time-value function and the vocabulary introduced

above, consider again the notion that a scheduler can do a more effective job when it has more complete or

better quality information on which to base decisions. Consider the algorithms a scheduler can use given

specific types of information (unless otherwise noted, these are all discussed in [Conway 67], [Janson

85] or [Peterson 851):

Scheduling Dependent Real-Time Activities C.9

" no information - there is no way to distinguish activities so round-robin or random
scheduling of ready activities would be appropriate;

" relative importance of activities - priority scheduling of ready activities, this algorithm would
always run the highest priority (most important) ready activity;

* deadline and required computation time of activities - deadline scheduling, where he ready
activity with the nearest deadline is always selected to run, or slack-time schedulinv. where the
ready activity that has the least slack-time6 is always selected to run, would be optimal
algorithms with this information,

a time-value functions [Jensen 75], which capture importance and timing requirements - more
complex schemes such as best-effort scheduling [Locke 86] of ready activities can be
employed, Locke showed that under his model, this approach can be more effective than those
listed above.

This thesis will explore the consequences of allowing the scheduler to have access to not only the

activities' time-value functions, but also to information describing the dependency relationships existing

between activities. This should enable the system to take into account the time constraints of blocked

activities, allowing a better ordering of activities, along with the earlier detection and better resolution of

overloads.

Notice that the dependency information that is to be used by the proposed scheduling algorithm is not

very exotic or difficult to cbtain in many cases. Often, the operating system or a system utility, such as a

lock manager, holds key pieces of this information. Whenever an activity is unable to gain immediate

access to a shared resource, it is typically blocked. At that point, the system is capable of noting which

resource is being accessed, as well as the identities of the activities holding and requesting the resource. In

other cases, straightforward extensions to the operating system interface woul, T'rovide the necessary

dependency information for the scheduler's use. As a result, if the algorithm can be demortstrated to have

sufficient merit, an implementation would not seem to be unduly difficult.

1.3. Scheduling Example

In order to demonstrate some of the points that have been made earlier and to illustrate the type of

problem that is to be addressed by this thesis, consider an example

Assume that there are only three activities, each consisting of only a single plase. Designate these phases

Pa' pb" and p,. Phase Pa has a relatively 10') importance, requi'es four time units of execution time to

complete, and must complete execution within 15 time units of its initiation It requires the use of shared

resource r. It requests access to r after it has executed for one tnie unit, and release,, r after it has exec,:uted

for a total of three time units

Phase Pb has a medium importance, requires three time units of execution time, and must complete within

four time units of its initiation. It also uses shared resource r. Like pa. it requests r after it has executed for

one time unit and releases it after it has executed for a total of three time units.

slack-time deadline - pmlent time - required computation time.

C-1O Scheduling Dependent Real-Time Activities

Phase pc has a relatively high importance, requires four time units to complete execution, and must

complete within ten time units of its initiation. It does not access shared resource r.

All of these phases are initiated as a result of external events. Suppose that the event that initiates phase

Pa occurs at time t = 0, and the event that initiates both Pb and p, occurs two time units later. This implies

that the deadline for completing phase Pa is time t = 15, the deadline for completing phase Pb is at time t =

6, and the deadline for completing phase PC is time t = 12.

If these phases are to be scheduled using a priority scheduler, then it seems clear that their importance to

the application should act as an indication of the.r priority. Therefore, if PriO is a function that returns the

priority of a phase ...
Pri(pa,) < Pri(p.) < Pr, p'.)

Also notice that this is a situation where urgency, when defined as the nearness of a deadline, is not the

same as importance. To see this, let DLO represent a function that returns the deadline of a phase. Then

DL(pb) < DL(pC) < DL(pa)

A pnonty scheduler will always execute the ready phase with the highest priority. A deadline scheduler

will always execute the ready phase with the nearest deadline. Whenever a phase is waiting on a resource,

it is blocked and so is not ready. Applying these rules to phases p 0, Pb and p, yields the execution profiles

shown in Figure 1-2. The x-axis represents time, while the y-axis indicates which phase is executing at any

given time. Significant events in the executions of the phases are indicated. Notice that neither the priority

scheduler or the deadline scheduler could meet all three deadlines. Both failed to allow phase Pb to meet its

deadline. A more sophisticated version of the priority scheduler, for example one of the priority

inheritance schedulers mentioned earlier, will not solve the problem either. The algorithms to be

investigated in this thesis will solve this problem.

1.4. Motivation for the Model

Much of the model of supervisory control systems that has been presented is straightforward and is

largely based on current practices and systems. Nonetheless, a few points - most notably the use of

application-specific values within the system - may not be obvious or typical of existing implementations.

These issues will be fuither explained in the following sections.

1.4.1. Accrued Value

Evaluating a scheduling algorithm by determirung the total value it accrues while executing an

application is unusual. However, not only is it intuitively appealing, it is also appropriate in many cases.

The intuitive appeal lies in the view that accumulating value represents making progress. As each

activity completes designated portions of its execution, value accrues to indicate the utility to the

application of that particular computation.

Scheduling Dependeni Real-Time Activities C-11

Iko~ing r

s T: Deadline Scheduler

t

-h- Static Priority Scheduler

pa J I

t
-- I,g rlg rl

q- rem-es. r
- grar. :s- reQeaQ z

Figure 1-2: Execution Profiles for Priority and Deadline Schedulers

Whi.le this might sound plausible as a metric, there remains the question of whether values can be

assigned mean.ingfully to computational phases of an activity. In many instances, there is strong reason to

believe that this is the case.

The class of process control applications provides one example of the applicability of truc approach.

Typically, one or more processes are being controlled or one or more producv: are being manufactured

under the supervision of a single supervisory control computer system. Since the goods being produced

have a monetary value, it is possible to assign values to particular activities based on the commercial worth

of the god s being produced by each activity. Consequently, the use of a scheduler that maximizes the

amount of value accrued for the application -s actually maximizing the commercial value of the goods

being produced. This seems entirely reasonable. (Conversely, if it seemed more natural, the notion of

monetary loss or penalty could be used instead of the monetary value or profit outlincd. The underlying

notion is essentially the same in either case.) 7

During an overload, when there are insufficient resources to meet the overall demand, some activities

"The use of monetary mesures to detrmine schedules ha long een used in the operations research and job shnp scheduling
comrnmunitie%. The model used in this work differs somewhat from their model. rlus is dealt .i'- i some depth in Chapter 6.
Bnerfl), the tynical job shop model assumes that the set of orders currently known will all be filled at some point in time. That is, all
activities will eventually be run. This 'ies not take into acount the fac' tht in real-time computer sstcms. some activites are of
on.y transient value because they ar run frequeniiy or because theN must be run in a timely fashion or not at all due to the quality of
the information or the physical time ionstraints of the application.

C-12 Scheduling Dependent Real-Time Activities

may not be scheduled. It would be perfectly reasonable to select Ahich of two activities snould be run

based on their relative values. In fact, it would be possible that during an overload involving three or more

activities, the activity with the highest individual value would not be scheduled. Rather, two or more

activities with lower individual values, but with a higher combined value, could be scheduled.

This overload behavior should be contrasted with that of other scheduling policies. For instance, a

priority scheduler would always execute the activity with the hig hest individual value at any given time

(assuming that the priorities assigned to activities corresponded to the commercial worth of the acuvity as

described previously). In the case just outlined, this would result in a lower total value than, t,' method that

maximized value.

A steel mill application can illustrate this point, while demonstrating the dynamic nature of the

assignment of values to tasks. The steel mill under consideration has a furnace and caster that combine to

transform raw materials into slabs of finished steel of specified chemistry. There are two functions that are

particularly interesting: chemistry control, which controls the chemical composition of the steel being

produced, and quality control tracking, which follows the progress of the steel through various stations in

the mill including the caster and associates a specific chemistry with each foot of every steel slab produced

by the mill. A single supervisory control computer monitors and controls both of these functions.

During overloads, the supervisory computer may have to decide which function should be run. Most

often, the value associated with the quality control activity should be higher than that associated with the

chemistry control activity. This is because it is important to know what is in each steel slab that is sold. In

fact, since many customers will not buy a slab without detailed knowledge of its chemistry, the profit that

would be realized from the slab is at stake if the tracking activity does not execute in time. On the other

hand, if the chemistry control activity is not executed, the chemistry of the steel may be different from what

was intended. This is acceptable if the resultant chemistry is one that can be sold or can be further

processed to obtain such a chemistry. Notice that the chermistry - even if it is not the chemistry that was

originally intended - is known and can be tracked by the quality control activity.

The dynamic nature of value assignments is shown by the fact that the above generalization does not hold

in every case. When a particularly rare chemistry is desired, it is sometimes the case that the steel cannot

be sold if the chemistry is not exactly right, therefore placing the profit for the heat in jeopardy if the

chemisuy control activity is not rn.a It is possible that the profit involved, especially for a specialty steel,

will outweigh the profit that will result from tracking steel slabs of more typical chemistries through the

rest of the mill. Since these decisions vary with each heat (mix) of steel, values must be assigned to the

chemistry control and quality control tracking activities dynamically to correspond to each heat.

Miltiarv defense systems are a second class of applications that seem to allow values to be assigned to

component activities meaningfully and would benefit by using a scheduler that maximized accrued value

for the application. In this case, the value accrued for an activity controlling a defense system would be

derived from the number of lives or the number of other military assets tht can be saved- As unsettling as

it is to con-sider, it seems wise to employ a scheduler that maximizes the number of lives or ascts that are

successfully defended.

Scheduling Dependent Real-Time Activities C-13

These examples make use of the fact that there is a common "currency" in which values can be expressed

naturally - money in process control situations and lives or other military assets in combat systems. In

such situations, it is relatively straightforward to assign values to various activities8 . Other applications

may require that values take into account a number of different factors - money, lives, operator

satisfaction, and so forth - and appropriate weightings of these factors will have to be developed to

produce acceptable and meaningful activity values.

Of course, the real test of the utility of this approach will come in the future when scheduling algorithms

that maximize application-defined value are employed in production systems - or, perhaps, prototype

versions of production systems. At that time, the performance of these systems can be compared directly to

alterntive approaches. Pending the outcome of such tests, it does seem to be useful to explore the notion

of maximizing the value for an application.

1.4.2. Time-Value Functions

As shown in the above discussion, the notion of assigning values to application activities and scheduling

activities to maximize the accrued value for the entire application has merit in a wide range of applications.

These assigned values reflect the relative importances of the activities that they represent-

Since the systems under consideration for this work are real-time systems, the value associated with the

completion of a computation vanes as a function of time. For example, in an automated assembly

application, the value of closing a mechanical manipulator to grasp a part on an assembly line is a function

of time. If the grasping motion is completed too soon, the part will not have reached the manipulator yet.

If the grasping motion is completed too late, the part will have already passed by the manipulator.

Time-value functions facilitate the description of the time constraints and relative importances of the

activities comprising a real-time application. The time-value function records the value to be accrued by

completing the designated compuational phase at each point in time.

Time-value functions seem to be a fairly natural expression of the utility of completing a given

computation as a function of tme in many situations. A skilled operator in a process control environment

or a carefully constructed functional reqwtrements document for the system will often be capable of

describing all of the information encoded n a time-value function.

Although time-value functions are a relatively new formalism for expressing the relative urgency and

'This act of assigning values to specific activities ,omprsing an application corresponds roughly to the normal assignment of
pnontie s to activities (where the activitics am often called pror-esses or tasks). It rnan., modrm applications a number of activities
coordinate to provide a single application-level loc:cal functio, such as materal tracking In such s stems, some activities may
provide a specific service, such as accessing a traLking database, to a number of othcr activities with widel) vat-sing values. The
assignmrnent of a single value to the se,-ver actviry LS dsfficul!1 If it has a lower value t.ib O 1 ,t, that ii is cuTre tI. scryiF. then it

may not be scheduled as quickly as it should be. On the other handl if !t has a h!?her 'aJue tha the ac', i-. iit is eg in&. then it may
consume resources that could, and should. be used by other activities This problem is all-iated f an approach is taken where the
activities un the computer application can coirespnnd dirrctly to the application level logical tun,:tiis. while still providing for
modular construction of the application. This has been dorn in the AJpha Operaung Syser.

C-14 Scheduling Dependent Real-Time Activities

importance of each activity in a real-time system, they are beginning to make the transition into practice

and have been used successfully in a few selected contexts.

1.5. Technical Approach

The technical approach described in this section has been adopted in order to carefully address the

problem of scheduling with dependencies and to explore and evaluate potential solutions. Briefly, the

approach consists of the following major steps:
1. define a computational model within which to work,

2. devise an algorithm that possesses the required properties and express it within the
computational model;

3. insofar as possible, demonstrate analytically the correctness, utility, and tractability of the
algorithm;

4. simulate the performance of the algorithm on common classes of supervisory control systems
and compare v- th other relevant algorithms or ideals.

1.5.1. Define Model

The first step. defining a computational model, is intended to provide a clear, useful framework that will

capture the essential aspects of the problem to be solved and will also support the specification of

unambiguous solutions, embodied primarily as scheduling algorithms. The need for a model that exhibits

all of the desired problem features, while excluding all factors that are non-essential for the problem

statement and solution is obvious. If the work is done with the simplest model that accurately expresses the

problem, then the work will be more comprehensible and succinct. Equally important is the requirement

that the model support the unambiguous specification of scheduling algorithms. Without such definitions,

the ability to perform precise/definitive analytic proofs to demonstrate properties of an algorithm will be

lost Also, a set of requirements for problem solutions is formulated in terms of the computational model.

1.5.2. Devise Algorithms

After the model has been created, it is possible to begin exploring various algorithms within the

framework provided by the model. While the computational model is intended to support the development

of a number of scheduling algorithms and will provide an excellent platform for the extension of this work

in the future, this thesis does not explore a wide range of alternative algorithms exhaustively. Rather. it

identifies and characterizes the behavior and performance of a single algorithm that has the desired

properties, called the Dependent Activity Scheduling .4'gorzthm (DASA). This algorithm will be described

in two forms - a formal, mathematical form that will be used to define the algorithm and to support

analytic proofs and a procedural form to provide a measure of the algonthm's complexity and to support

the simulation work that has been done. 9

IActuiaJly. the mathematical definition features non-determinism in certain places. indicating that ordernng is unlinport "It With
respect to the aigonthm at thoe points. T'he procedural definition, howe,er, does not contain any non-.eterrnnism ard so an be
vieced as m single specific unplementauon of the aJgounim that the mathematical deinition de :cnbes.

Scheduling Dependent Real-Time Activities C-15

1.5.3. Prove Properties Analytically

Once the DASA algorithm has been defined, analytic proofs that demonstrate that it satisfies the problem

requirements may be devised. The formal model that is used to describe the scheduling algorithms is based

on automata that accept certain sequences of scheduling events. There is a different automaton associated

with each distinct scheduling algorithm. So. for example, the automaton associated with the DASA

algorithm will accept any sequence of scheduling events that is consistent with the behavior of the DASA

algorithm. Such automata can also accumulate the value assigned to an execution history. By comparing

the execution histories accepted by the automata corresponding to different scheduling algorithms, proofs

can be constructed that show that two scheduling algorithms accept different histories. Furthermore, the

proofs may compare the values accumulated for all of the execution histories accpeted by the automata

representing certain scheduling algorithms for a specific set of phases vith specific time-value functions

and computation time requirements. (Taken together, these last two items -. a phase's time-value function

and its computation time requirement - are referred to as the phase's scheduling parameters.) Such

comparisons can be used to demonstrate that one scheduling algorithm is capable of generating schedules

that are superior to those of another algorithm, measured in terms of total value accrued by the application

during its execution history.

Unfortunately, real-time systems featuring complex, dynamic dependency relationships are quite

comp!,:x. And, although the analytic proofs can make some observations about the correcmess, behavior,

and value of the algorithm, a complete case for its ut:lity cannot be made without demonstrating its

performance under realistic conditions. To address this need, simulations have been carried out to

investigate the performance of the DASA algorithm and to demonstrate properties that cannot be proven

analytically.

1.5.4. Simulate Algorithm

A parameterized workload has been devised that can mimic various numbers of activities displaying a

range of access patterns to a set of shared resources. Using this workload, a suite of simulations has been

run. These simulations compare the benefit of using the DASA algorithm instead of a more standard

algorithm - for instance, a static priority or deadline scheduling algorithm with FIFO queueing for access

to each shared resource. They also compare DASA's performance with a reasonable estimate of the

theorertical maximum value that can be obtained. The DASA scheduling algorithm is relatively complex

when compared to more standard scheduling algorithms. Consequently, in a uniprocessor implementation

of the algorithm. DASA will require more time to select an activity to execute than a more standard

algorithm would. In order to be fair in performing comparisons among scheduling algonthms, this

additional ovcrhead is also taken into account. The simulation results reveal situations in which applying

the DASA algorithm will probably be profitable.

Scheduling Dependent Real-Time Activities C-1 7

Chapter 2

The Scheduling Model

Models are central to abstract study. They allow the salient features of a potentially complex system to

be isolated and restrict the size of the space of possibilities to be investigated. Properly specified, a model

provides an unambiguous definition of the behavior of a system and highlights the underlying assumptions

that are made by the investigator. Within the framework of the model, simulations and analytic analyses

may be performed.

To take advantage of all of these properties, a model has been devised that possesses the necessary

richness and within which scheduling algorithms can be studied. This chapter presents this model and

describes the rationale that shaped it.

A formal computational model has been constructed to facilitate the definition and formal analysis of

scheduling algorithms. Initially, this model is presented informally in order to allow for a natural

discussion of the issues that shape the model and the intended structure of the model and the environment

provided by real-time applications. This is followed with a formal description that provides a detailed,

precise specification of the model.

2.1. Informal Model and Rationale

The informal discussion of the computational mrndel will describe each of the principal elements of the

model in general terms. This should allow the reader to have an intuitive grasp of the interplay of various

elements of the model without having to wade through a mass of symbols and mathematics. This will set

the stage for the presentation of the formal model, where all of the details will be specified for each of the

principal elements of the model.

2.1.1. Applications, Activities, and Phases

As mentioned in the previous chapter (in Sections 1.1 and 1.2), an application is composed of a set of

activities. Each activity, in turn, comprises a sequence of computational phases, and each computational

phase is characterized by a time-value function that indicates the importance and urgency of that phase. At

any given time, an activity is operating in a siagle computational phase so that the activity can be uniquely

identified by designating the phase that is currently underway. Therefore, the complete set of activiues can

C-18 Scheduling Dependent Real-Time Activities

always be represented by the set of phases currently in progress 10 and this set can be designated as:

{po,p1,P2, -.. I

The execution of an application involves sharing the single processor among the set of active phases over

time. The determination of which phase to run at any given time is made by the scheduler, one of the major

components of the operating system, based on the relevant information available to it.

2.1.2. Shared Resources

Phases may access shared resources. A request for such access is signalled by a phase by means of a

request' event for the specific resource desired. Permission to access a shared resource is given to the

phase by means of a 'grant' event.

All shared resources that are held by an activity must be released at the completion or abortion of each

computational phase. This assumption is justifiable on two counts, but may, at the same time, seem to be

restrictive. Frst of all, when a phase represents a distinct logical stage in a computation, there is good

reason for expecting that the resources used to carry out that phase may be released upon its completion.

Of course, if phases are used to represent very fine grained portions of a computation, then this assumption

may be called into question. However, since each phase is a unit of computation that corresponds to a

single time-value function, and since the time constraints that dictate the time-value functions are derived

by the physical necessity of completing a computation in a certain time frame, it seems clear that using

phases to delimit very small portions of an activity departs from the expected, and useful, application of
phases to decompose activities in a real-time system.

The existence of stylized applications or system facilities gives rise to the second justifization for the

assumption that all shared resources are released at the completion of a computational phase. One specific

example of such an application is an atomic transaction facility. The use of transactions in real-time

systems is appealing, but the question of how to schedule them is unsolved. By allowing this model to

capture the behavior of transaction facilities as well as the assumed normal behavior of real-time activities,

the work presented here can hopefully make a somewhat greater contnbution.

2.1.3. Phase Preemption

At any given time there is one phase that is actively executing on the processor. That phase may be

preempted by the scheduler at any time. A preemption is signalled by a 'preempt-phase' event. Should the

scheduler subsequently determine that the phase should be resumed, it would issue a 'resume-phase' event.

10For the purposes of this modeL a phase is considered to be "in progress- as soon as it is ma c known to the operating system. So,
for instnce,. a phase that has never executed a single instuon of its code is nonetheless considered to be in progress - it has
progressed far enough to submit its initial resourie request (in terrs of requird processing tme. importance, and urgency) to the
system.

Scheduling Dependent Real-Time Activities C-19

2.1.4. Phase Abortion

The scheduler may decide to abort a computational phase at any time. This is indicated by issuing an

'abort-phase' event for the phase to be aborted. A phase might be aborted to free a shared resource more
quickly than it would otherwise be freed. Or. a transaction facility might issue an abort in response to a

component failure or to resolve a detected deadlock.

The amount of time required to completely process an abort depends on the number and type of resources
held by the phase being aborted. Each time access to a new shared resource is granted to a phase. the

amount of time required to abort the phase is incremented by an amount dependent on the newly granted

resource.

The incremental amount of abort time associated with a resource may arise from several sources. For

instance, for resources that are treated like data objects in a traditional database system, each data object
altered dunng the course of an aborted transaction must be returned to the same state it had prior to the
transaction. The time required to restore this pre-transaction state is determined by the time required to
find the desired value followed by the time required to actually update the data object.

In other cases, more must be done than merely restoring the state of the appropriate memory locations.
Real-time systems often control physical processes by regulating actuators that effect changes in the

physical environment- Permission to manipulate an actuator may be acquired by successfully requesting
exclusive access to a shared resource that is logically associated with the actuator. Once access to the

resource has been granted, the actuator is available to, and manipulated by, the requesting computational

phase. If the phase is s,:bsequentdy aborted during its execution, then it is quite possible that the actuator
may have to be manipulated once more in order to return the physical environment to an acceptable state.

The amount of time required for such compensating actions must be included in the time allotted for abort

processing for each resource of this type.

Following the completion of an abort, the effected activity will be ready to reexecute the aborted phase if

time and resources permit.

2.1 Fvnts

To motivate the development of a formal model. imagine that all of the major components of an operating

system interact by signaling specific events to one another. Conct-ptually, these events encapsulate

information and commands, and Ubcy can onginate wi.hin the operating system or from the zomputauratl

phases comprising the application.

As shown in Figure 2-1. each event includes an event timestamp, an operation name, appropriate
arguments for the operauon, and the originator of the event. Tumestamps are used to provide a global

ordering of all scheduling events. There are a small number of scheduler-related operatiors, which will be
described below And, as far as scheduling-related events are concerned, the originator of an event is either

C-20 Scheduling Dependent Real-Time Activaies

the scheduler itself (meaning that the event passed across the interface from the scheduler to the rest of the

operating system, possibly continuing on to an application phase or an individual phase (meaning that the

event passed from that phase to the scheduler, via the operating system).

t c .ent op(parms) 0
where,

t is a timestamp,
op is a scheduling operation (as defined in Fig. 2-4),
parms is the set of arguments for the operation op.
O is the originator of the event (either p, for a phase, or S,

for the scheduler)

Figure 2-1: Format of Scheduler Events

2.1.6. Histories

Given this model of operating system structure, an observer located within the operaung system could

watch an application execute and monitor the interface between the scheduler and the rest of the operating

system. (See Figure 2-2.) The observer could then record a sequence of timestamped events passing across

the interface. Conceptually, these events would represent the communication of information and

commands to and from individual activity phases and the scheduler.

Such a sequence of scheduling events is called a history. In general, any sequence of scheduling events

constitutes a history. although not all histories are meaningful. To aid in recognizrng which histones are

potentially meaningful, definitions have been developed for well-formed histories (e.g., timestamps

increase throughout the history, the only event operations included in the history are those listed in Figure

2-4) and for legal histones (i.e.. well-formed where the sequence of events is plausible, for example,
Irequest's precede 'grant's). Operations on histories have also been defined to facilitate their

manipulation. For simplicity, the only histories that are ever dealt with in formal analysis, after the

introduction of these definitions, are legal, well-formed histories. (The definitions referred to in this

paragraph are presented in Section 2.3.2.8.)

Different schedulers will select different activities for execution based on the relevant scheduling

parameters for each phase under consideration. Consequently. different histones will be generated by

lifferent schedulers,. e,.en though they ma. be execuLng the same application under the same conditions.

Examining these histones allows the performance and behavior of the schedulers to be cCrmparcd and

contrasted. Formally, the histories are examined by a special type of ftnite state automaton, called a

scheduling automaton.

Scheduling Dependent Real-Time Activities C-21

Activity1 Aciiy Aciie ** Activity,

request-phase grant preempt-phase

Application

Os

Manager, Manager 2 fOe er

rqni rant

Scheduler Intf.

Observer
Scheduler

Figure 2-2: An Observer Monitoring the Scheduler Interface

2.1.7. Scheduling Automata

Since events and histories have been defined formally, automata can be created that recognize legal

histories corresponding to various scheduling algorithms. Such an automaton is called a scheduling

automaton.

Each scheduling automaton incorporates a scheduling algorithm. The automaton accepts - that is,

recognizes - any history that could have resulted from the use of the scheduling algorithm that it

embodies. All other histories contain some sequence of scheduling events that could not possibly have

resulted from the use of the embodied scheduling algorithm and are rejected by the automaton.

2.1.7.1. General Structure

Figure 2-3 shows the structure and the internal components of a scheduling automaton. The automaton

examines each event in a history in turn. Each event is either accepted or rejected If any individual event

is rejected, then the entire history is rejected.

Each event comprises an operation, a umestamp, and a set of parameters for the designated operation.

The automaton associates a precondition with each type of event operation When considering an event,

C-22 Scheduling Dependent Real-Time Activities

,1Operation Selector

-

Figure 2-3: Scheduhng Automaton Structure

the automaton's Operauon Selector acti..ates a test that determines whether the precc:,u , r.. ;i,

with the events operaton is satisfied. If it is, then the event is accepted, and the actons specified in the

postconditions for the operation are performed. If, on the other hand, the precondiuon for the event's

operation is not satisfied, the event - and hence the entire history - is rejected.

This is illustrated in Figure 2-3. The diamond-shaped boxes represent the pILconditions associated with

the n event operations that may be accepted by the automaton. In a manner analogous to a flowchart, the

diamond-shaped boxes have two possible outcomes, and an arrow leaves the box for each outcome. If the

Scheduling Dependent Real-Time Activities C-23

precondition test fails, the arrows marked 'f' indicates that the history is rejected. Otherwise, the arrow

marked "' indicates the the postconditions associated with the operation must hold

The operation preconditions in the automaton test various conditions. These conditions may involve the

values of the automaton's state components, the event tmnestamp, or the parameters for the event operation

in question1" The state components constitute the internal state of the automaton that persists across

events. On the other hand. the information contained in the Event Parameters box does not persist from

one event to the next - it simply represents the operation parameters and the timestamp for the current

event.

The availability of this information for precondition testing is shown by the arrows leading from the State

Components and Event Parameters boxes to each Drecondition box.

The postconditions that must bold after an event has been accepted may change some of the state

component values, as indicated by the arrows leading from each postcondition box to the State Component

box.

If all of the events in a history have been accepted, the Operaticri Selector signals the final step - shown

as a single box containing the word "ACCIEPT" - to declare that the history has been accepted.

2.1.7.2. Specific Scheduling Automata

The preceding discussion oLtlines a standard automaton framework for expressing scheduling algorithms.

Each instance of a scheduling automaton for a specific scheduling algorithm w'.ld specicialize this general

form. This would typically involve: (1) the alteration of the preco-..litions and postconditions for the

operations accepted by the automaton; (2) the addition of some algorithm-specific state components; and

(3) the specification of a function that would select the phase to be executed at times dictated by the

automaton's postconditicris (or, perhaps, its preconditions).

It is largely through the last specialization - the selection function definition - that the sched._,ling

algontl-n embodied by the automaton is manifest. Differeut algorithms choose successor phases according

to different criteria. (They may also be invoked to make selections at different times, so that the selection

function alone does not completely differentiate all schedulers.)

The General Scheduling Automatun Framework is shown in Appendix A. It is a scheduling automaton

that lacks a few critical pieces. While. it displays the structure of a scheduling automaton and has a number

of state components, it is intentionally general and does not embody any speci& scheduling algorithm.

Later in this chapter (in Section 2.3.2), portions of this automaton franework will be examined in more

detail.

In later chapters, specific scheduling automata of interest will be -tudied. These will be presented as

1i. prncipal, the originator of the event could a]lso be t-.ted by d . p'condition, but this has not proven useful to date.

C-24 Scheduling Dependent Reul-T~me Acni iies

extensions or specializations of the General Scheduling Automaton Framework, shanne its struc:ture Lid a

superset of its state components.

2.2. Assumptions and Restrictions of Model

The computational mcel presented is quite general. In oider to focus on the quebtiions of grcatest

immediate interest in this thesis, a few simphfy.ing assumptions have been mnade. In pa-rtic:uijr, tvko spccific

assumptions should be stated and examined at this point.

First of all. time-value functions are resticted to be simpIl- stete funct ions. The most imrpc.oanr sI t

studied in the thesis is how to use dependency inforrnauon to crorLtnirct a scheidule ihat mimizes -he value

that an application accrues wit-hout spending too much time pe rformning scheduling dc::sicnzcs This ssu i

best isolated if considerations such as maximizing the value atteuned by completing a phasxe are initiall.,

izinored TIhis is an issue that shoui:1 be dealt with in the future, but it seems ike a seodo~~ fetfc-

most systems.

Sece.ndly, the compute tuoe 7- qutred iby an activity, to complete a computationai phase :s ard o

known accurately. In many real-timne systems, d-his is a fairly reasonable assumption- .\Adno dAtv

informatin to dJescnbe the actiual (ulittouton of computation times may iincr7ase the ':it of the

scheduling decisionis, but it will also Anvolve morm calculauon17S ind therefore 1-e mnore- c'stl For the

simple t'Y ps of 1cmputatins done in tpclsupervisory control i'cs it mnay xell be uffiz i:nt :(o take

the simpler approach first, at a sliehtI\ reduced cost.

2.3. Formal Model

lIi order to provide! a '-rtcise framewn'-rk in which to di-scuss sc:heduling poOiies for rcri1-ume .tvi>

die following formal mrodel has been adopted. It accommodats the aspects of use problemr domain that

were presented in Chapter I and tocludes all of the ideas discussed informally in thc precedirngcnoi of

this chapter.

Before discussing the model iLaelf, the notation that is crmployed is -tc<nbed, followed b-. definitions ot

key primitives in the model. Next, thc formal model is pre-rented in, depth. Puns disc usin i:; :ocuso-d

around tfhe dc~iinof the Creneral Schedulmiz ALutomaton !:amrc,, ork.. \ll -)f ihe othe.- 'cte inp

automata referred to by this work x.'ill be defined -,,nth res~pect to this framec-,,-rk. Finaily, ai numbe"r Af

observations; concerning the formal miodel are outlied.

2.3.1. Notation and Definitions

T'his section descnbeso-- the notation that is used throughout the rest of this and whbseoquent chapter-;. e

notation is explained it this point so that all of t1--. disc:ussion that follows c:an be ;.!&vTrvnicd

unambiguously.

Scheduling Dependent Real-Time Activities C-25

Naming Conventions A set of conventions are employed in defining the computational model and the

scheduling automata1I-:

" Identifiers written in all capital letters denote domains of values (e.g.. TIMESTAMP.
BOOLEAN); individual values from these domains are written in all lower-case letters (e.g., t5,
true)

" Each scheduling automaton has certain state components associated with it, these are
designated by identifiers that begin with a single capital letter followed immediately by at least
one lower-case letter (e.g., Total, AbortClock)

" If an automaton accepts an event in a history, the postconditions associated with the accepted
event hold; when these postconditions result in modifying the value of a state component, the
new value is followed by an apostrophe (e.g., Clock' = Clock + I means that the new value of
the automaton state component named Clock is one greater than the old value)

Mode-Phase Pairs. Typically. specifying the current workload of the processor is simply a matter of

naming the phase that is being executed at this time. However, since it is possible to execute a phase

normally or to abort it, it is necessary to refer to the computation being performed on the processor at any

given time as a mode-phase pair. Such a pair specifies both the phase that is being executed and the mode

of execution (either 'normal' or 'abort'), and it is written as an ordered pair delimited by angle brackets:

<,n, p>.

Two auxiliary functions exist to select the individual fields from a mode-phase pair. Specifically, if

mpp = <m, p>, then:

Mode(mpp)=Mode(<m,p>)=m

Phase(mpp)=Phase(<m,p>)=p

Time-Value Functions. The simplified time-value functions studied in this work are described as step

functions, where the amplitude of a function indicates the value of completing the corresponding phase on

time. Let the time-value function for phase p be given by:

Value(p) = step(val, t,)

where,

tc is the critical time, or deadline, for this phase of an activity,
val > 0, is the value associated with compleung a phase by its deadline,

step(val, t,)(t) = vat, t < 1C
0, t>t

Then define the following functions that select parameters from the simplified time-value functions:

Deadline(p) = DL(Value(p)) = DL(step(val. tc)) = tc

Val(p) = V(Value(p)) = V(step(val, tc)) = vat

12So(c of these conventions and much of the notation in general has been modeled afier a st-ie u ed h, Maurice IterlIhy

C-26 Scheduling Dependent Real-Time Activities

2.3.2. The General Scheduling Automaton Framework (GSAF)

The General Scheduling Automaton Framework, expressed within the formal structure described in this

and previous sections. provides an overall specification for the generic scheduling automaton. Although it,

in fact, embud.ies no specific scheduling algorithm and is incompletely specified in other respects as well,

the automaton framework is useful because all of the automata discussed in the rest of this work are derived

by modifying it in relatively minor ways.

in the following sections, formal definitions will be given for activities, phases, shared resources, events,

operations, and histories. Within this context, the various parts of the General Scheduling Automaton

Framework can be expressed formally as well. These parts include the automaton state components and the

preconditions and postconditions associated with the operations accepted by the automaton.

2.3.2.1. Applications and Activities

An application is composed of a set of activities, each of which comprises a sequence of computational

phases. At any given time, these activites can be referred to by means of the phase that they are currently
carring out. Therefore the set of activities can be represented by the set of phases currently defined: {po,

P). P2 . ..

2.3.2.2. Events and Histories

While executing an application, an observer located within the operating system could monitor a

sequence of time-stamped events passing to and from the scheduler. These events are of the form:

leent op(parms) 0
where,

I is a timestamp,
01P is the operation associated with the event (as defined below).
parms are the arguments for the operation,
0 is the originator of the event (either p, for a phase, or S,

for the scheduler)

A sequence of these events is called a history. Notice that some of these events are generated by individual

phases and some are generated by the scheduler.

2.3.2.3. Operations

The operations that may occur in events, and the potential onginators of each, are shown in Figure 2-4.

The general meaning and usage of each of these operations may be stated very bnefly:

" 'request-phase' - ends one computational phase and descnbes the requirements of the next
atomically;

" 'abort-phase' - aborts the designated phase. returning all of the shared resources held by the
phase to acceptable states for use by other phases.

" 'preempt-phase' - suspends the currently executing phase;

* 'resume-phase' - resumes a phase that had previously been preempted;

Scheduling Dependent Real-Time Activities C-27

Operation Type Potential Originators)

request -phase(v. t epecrM) Phase

abort-phase(p) Scheduler or Phase

preempt -phase(p) Scheduler

resume-phase(p) Scheduler

request(r) Phase

grant(p. r, Scheduler

where

v is a time-value function,
texpeced is the time required to execute the phase, assuming no

waiting must be done to acquire shared resources.
p designates a phase,
r designates a shared resource, and
t,,,ndo is the time required to restore a shared resource to its

pre-grant'ed state

Figure 2-4: Operation Types and Originators

" 'request' - signals a request for access to a shared resource;

* 'grant' - grants permission to access a shared resource.

However, the precise meaning and usage of these operations is wholly dependent upon the scheduling

displine embodied by the automaton. For instance, one automaton (embodying a FIFO or priority

scheduling algorithm, for example) may deem that a new 'request-phase' event may be signaled by the
currently executing activity at any time and that the activity may continue executing; while another

automaton (embodying the DASA scheduLing algorithm, which is presented in Chapter 3) may require that
a scheduling decision must be made at that point, possibly resulting in the execution of a different activity.
Similarly, the rules for when, and even if, phases may be preempted or aborted may vary from automaton

to automaton.

Section 2.3.2.10 describes, in a little more detail, the semantics associated with these operations. Once

again, there is some vagueness due to the fact that the definition is couched in terms of an automaton

framework and not a true automaton instance. In Chapter 3, specific definitions will be presented for the

operations accepted by the DASA Scheduling Automaton.

C-28 Scheduling Dependent Real-Time Activities

23.2.4. Computational Phases of Activities

The individual computational phases that comprise an activity are delimited by 'request-phase' events. A

request-phase' event simultaneously ends one computational phase of an activity and describes the known

requirements of the the next computational phase.

Each phase that is successfully completed contributes value to the overall application. That value is

determined by evaluating the time-value function describing the phase just completed at the time of

completion. On the other hand, an aborted computational phase contributes no value to the overall

application - although it may free resources that allow other critical phases to execute.

2.3.2.5. Shared Resources

Phases may access shared re,ources. A request for such access is signalled by a phase by means of a

request' event for the specific resource desired. Permission to access a shared resource is signalled to the

phase by means of a 'grant' event.

All shared resources that are held by an activity must be released at the compleuon or abortion of each

computational phase.

2.3-2.6. Phase Preemption and Resumption

At any given time there is one phase that is active. It may be preempted by the hcur his is

signalled by a "peempt-.r-hase' event. The scheduler may subsequently determine that the ph.-;e ,hould be

resumed. this is sienalled by a 'resume-phase' event.

The computational model allows a phase to be preempted at any time. Individual scheduling algorithms

may restrict this by only allowing preemption at spci ific times or by not perrniting preemption at all. This

type of behavior is formally described in the precondition of tic 'preempt-phase' event ope auon for each

specific scheduling automaton.

2.3.2.7. Event Terminolog, and Notation

Some additional terminology and notation will be useful icr discussing evcnts. !.t an cor't. , rt,..ppr-ent

the following event:

e = te~en t p(parms) 0

Then define the following stmple functions:
:.nlshtrn pe) =tet

e.ertw;pei e) = op

source~e) = 0

Scheduling Dependent Real-Time Activities C-29

2.3.2.8. Defimitions and Properties of Histories

Earlier, a history was defined as a sequence of events. Not all histories are meaningful or well-formed.

Let eo. el. e 2 ... denote events. Then, formally, a history, H, can be denoted as:

H=e 0 . e,-e 2 ee

where the operator " denotes concatenation.

Informally, a projection of a history selects certain events from a history, preserving their relative

postions in the projection. Therefore, a projection of a history could include all of the 'request-phase's

from the history or all of the events that dealt with a specfic phase. The symbol "I" denotes a projection.

So for example, H I p represents the projection of history H onto phase p. This projection would include all

of the events that were originated by phase p or that were originated by the scheduler and included p as an

operational parameter.

The conditions that define a well-formed history include1 3:

" event timestamps must increase monotonically and must be unique - test: examine the
timestamps on events; for example, apply the function timestampsOKO to a history H to verify
that it meets this requirement, where timestampsOKO is defined as:

timestampsOK(O) = timestampsOK(e) = true

timestampsOK(e le 2.H) =
false, iftimestamp(e1) >_ timestamp(e2)
timestampsOK(H), otherwise

" request for a resource must appear in the schedule before the corresponding grant - test: for
each 'grant' event, search the history of the phase in which the 'grant' occurred for a
preceding 'r-quest'for the same resource

" a phase cannot be preempted if it is not active, it cannot be resumed if it is active; and so on
simple tests check all of these conditions

" a given phase either commits or aborts; the events assure that a singel phase cannot do both;
however, a well-formed history must have at most one 'abort-phase' event for any given phase
- test: examine the history for the occurance of tmo or more 'abort-phase' events for a single
activity that ore not separated by a request-phase' event.

* expected compute time is accurate - test: check that the estimated computation time equals

the actual computational time used, for example, the following test could be applied.

cttest(H) = (Vp)(comptimeOK(tt I p) vphaseaborted(H I p)
vphaseunfinished(H I p))

where,

131t is not always clear that a specific test be a requirement of a well-formed history or whether it is a requirement that determines
which histories will be acepted by a given automaton. Tbere is no question that the proper temporal ordering of events is a
requirement for a well-formed history; however. tests that constrain the relative ordcring of specific events - for instance. 'request'
and 'grant' events - in a history are not so obviously requirements for a well-formed histon' As a result, ths list is merely an
aempt to lay down an initial set of tests. Some of these tests need not be done prior to submitting the history to an automaton - in
those cases, the automaton will enforce the requirements verified by th tests in question.

C-30 Scheduling Dependent Real-Time Activities

comptimeOK(p,6) = comptimeOK(p~e) =0

comptimeOK(p~e1 e-MH
t-, +comptime&K(m. if (e ,=t1 ,reswne-phase(p) S

ve, =t, grantqp) S)
A(e,=t, preempt-phase(p) S

v e2=t2 requesr(r) p)
t,- 1 .if (e ,=t resume-phase(p) S

ve, =tj grant(p) S)
A(e-=t~request-phase(vt) p

v e,=t2 abort-phase(p) 0)

phaseaborted(p.0) = false

phaseaborted(pe-11) =
true, if e=1 abort -phase(p) 0
faLs e, if e=t , request-phase(v.1:) P
phaseaborted(p,H), otherwise

phseuniushed(pi) = true

phaseunfi'ushed(p~e ii
false, if e=t abort-phase~p) 0

ve=t1 request-phase(vt-)p
phaseunfinished(p.H), otherwise

" expected abort time is accurate - test: similar to the previous test

" estimated computation time required for a phase must always be greater th tri or equal to zero 14

- test: straightforwar-d inspection of each 'request-phase' event in the historyv

" no 'request' event should request shared access to the nullresource - test:, straightfomward
inspection of each 'request' event in the history

2-3.2.9. Automaton State Components

The state components associated with the General Scheduling Automaton Framework are shown in

Figure 2-5. Each component and the range of values it may take on, is described below.

E'cecMode. Erec.Wode is a relatiou that associates an execution mode with each phase. At any given

time, a phase can be either executing normally or aborting. Also at any time, a normally executing phase

can be aborted. Once an abort is initiated, it must be completed before normal execution of the entire phase

can again be attempted.

ExecClock and AbortClock. The next two state components shown in Figure 2-5 are used to track the

amount of time required to complete thc normal execution or the abortion of a phase. When a phase is

executing normally, the relation ExecCiock indicates the amount of processing time needed to successfully

14An addiuonal requirement may also be placed on the parameters of a 'request-phase' event: the value function must be of the
appropriate form, as outlined below. This reqjuirement has not been included in thuis because the tests that art present all appl , to
the general case of scheduling with dependency considerations in a real-time environment using information availabie trom arbitrary
time -value functions. This requirement is relaed to a Simplification made to make the work more clear and more manageable. and %o
does not seem to carry the same weight as the others litsted above.

Scheduling Dependent Real-Time Activities C-31

General State Components:

* ExecMode: PHASE-- MODE (MODE is either 'normal' or 'abort')

" ExecClock: PHASE -- VIRTUAL-TIME

" AbortClock: PHASE -- VIRTUAL-TIME

" ResumeTime: PHASE --+ TIMESTAMP

" Value: PHASE -- (TIMESTAMP --- VALUE)

" Total: VALUE (initially '0')

" RunningPhase: PHASE (initially 'nullphase')

" PhaseElect: MODE x 15 PHASE (initially '<normal, nulphase>')

" PhaseList: list of PHASE (initially 'W)

Domains for State Component Values:

" MODE: normal v abort

" PHASE: c 1P0, PP 2, . v nullphase

" RESOURCE: E {rO, rl, r2 , . v nullresource

" TIMESTAMP: real number, expressed in ticks of standard clock

i VALUE: real number 2t 0

* VIRTUAL-TIME: real number 2 0, expressed in ticks of standard clock

Figure 2-5: State Components of General Scheduling Automaton Framework

complete the execution of that phase. Similarly, when a phase is aborting, AborrClock indicates the amount

of processing time needed to complete thc abort pruce,4i.g.

At the start of a new phase, ExecClock associates a value provided by the activity with the phase. If the

phase was executed in isolation 16, ExecClock specifies the amount of time that would elapse before the

phase would complete executing. Each time the phase executes, the value of ExecClock for that phase

decreases. When it reaches zero. then the phase has completed execuuon.

On the other hand, AbortClock represents the time required to abort the current phase. In addition, the

exact length of time required to abort tie phase depends on the number and type of shared resources that it

has acquired. Therefore, since no shared resources have yet been acquired, AbortClock is zero at the start

of every phase. Subsequently. after any shared resource is requested and granted, the value of AbortClock

1'uTs designates a cross product. That is, PhaseElect is actually A mode-phase pair. as descr'bed tn Section 2.3.1

"By executing in isolation. contention with other activities for both processor cycles and shared resources is eliminated. In fact, the

phase does not execute in isolation and these fctors cannot be ignored - leading to this scheduling work.

C-32 Scheduling Dependent Real-Time Activities

is incremented by an amount that is a function of that resource. This amount of time has been chosen to

allow the shared resource to be returned to an acceptable state so that other phases may use it.

ResumeTime. ResumeTime associates with each phase the time at which it last resumed execution- This

value is useful in keeping the values of ExecClock and AbortClock accurate for the executing phase.

Whenever the currently executing phase is surrendering the processor, ResumeTime can be compared to the

current timc to determine the amount of computation time consumed by the phase - thus allowing

Ex.!cCknck or AbortClock to be updated. depending on the current execution mode.

Value. The relation Value associates time-value functions with phases. In this case, the time-value

functions are themselves represented by relations: given a time, a time-value relation will return the value

accrued by completing the phase at that time. As stated in Section 2.2. the time-value functions considered

in this work are simple step functions.

TotaL Total accumulates the values accrued by successfully completing phases. Initially, since nothing

has been accomplished. Total is zero. Then, after any phase is successfully completed, the amount of value

indicated by the phase's Value relation for that completion time is added to Total.

The values of the Total state components of two different scheduling automata that have worked on the

same application can be compared to determine which yielded a higher total value for the application.

(This fact will be used in simulations and proofs in later chapters when companng two different scheduling

algorithms.)

RunningPhase. RunningPhase indicates which phase is currently executing on the processor. If no

activity is currently executing - as is the case initially - RunningPhase is equal to nullphase.

PhaseElect. PhaseElect also indicates a phase. In this case, it is the phase that should be executing now.

If this is different than RunningPhase, then the currently executing phase should be suspended and replaced

by the PhaseElect. Once again, in the initially empty system, PhaseElect specifies that the nullphase

should be executed normally.

PhaseElec: naic.; not only the phase to be executed but also the execution mode for the phase.

PhaseList. Pha-eList is simply a list that containing all of the phases known to the automaton. This iisi

changes as new phases arrive and old phases axe completed. Initially, since there are no phases PhaseList

is empty.

Automaton-Specific State Components. Other state components are also associated with an automaton.

These are used to handle some of the bookkeeping details for the specific scheduler being used. The

components that appear above are intended to reflect the state that any specific scheduler would need and

maintain under this general model.

Specific irutial values may be given to many of these state components in order to satisfy the

requirements of a given automaton.

Scheduling Dependent Real-Time Activities C-33

Domains for State Component Values. The domains that supply the values for the state components

are straightforward and are shown in Figure 2-5 along with the state components of the General Scheduling

Automaton Framework. The domain MODE contains only two values: normal and abort. The domain

PHASE consists of all of the phases known by the automaton as well as the nullphase. Similarly, the domain

RESOURCE consists of all of the shared resources known to the automaton as well as the nullresource. The

values from all of the time-value functions are drawn from the domain VAL'E. These must be positive

(according to the assumptions stated earlier in Section 2.3,1) and are chosen from the real numbers so that

there are no unnecessary restrictions placed on them. The domain VAL-E also contains zero since Total

receives its value from this domain and it initially has no accrued value.

Time is central to the behavior of real-time systems, and the domain TIMESTAMPS provides a source of

markers in time for the automaton to use. Each timestamp is expressed in terms of ticks of a standard

clock. The tiAs of this clock are equally spaced in time; and in fact, nothing in the model prevents the

timestamps from taking on fractional numbers of ticks - thus allowing arbitrarily great precision to be

obtained in representation of times.

The other domain related to time is the VIRTUAL-TLME domain. Values from this domain represent time

durations. Once again, they are expressed in terms of ticks of the standard clock. These durations are used

to supply values for state components like ExecClock and AbortClock where only non-negative durations

are meaningful.

2.3.2.10. Operations Accepted by GSAF with Preconditions and Postconditions

The operations recognized by the General Scheduling Automaton Framework are shown in Figure 2-6.

(Notice that this figure has two parts, appearing on pages C-34 and C-35, respectively.) Minimal, or

skeletal, preconditions and postconditions for each operation are included in the figure.

In later chapters, some specific scheduling automata will be discussed in detail. Each discussion will

include a description of the preconditions and postconditions associated with the operations accepted by the

automaton under consideration. Consequently, the discussion of those topics in this section will be brief.

Only the highlights and general structure of an automaton's operation specification will be addressed here.

Since the 'request-phase' event denotes the initiation of each computational phase of every application

activity, it is accepted by every scheduling automaton. Furthermore, 'its precondition is simply "true",

indicating that new phases can arrive at any time. This does not necessarily require that a new scheduling

decision must be madc upon the arrival of each new phase, although some automata may do just that.

Since such a scheduling decision is not made in evta.y scheduling automaton, no decision is made in the

General Scheduling Automata Framework.

In the same spirit, the postonditions for the 'request-phase' event include only those conditions that will

almost certainly belong in every scheduling automaton of interest. Those postconditions: (I) accumulate

any value accrued from completing a previous computational phase of the same activity: (2) initialize the

automaton's state components to capture the new phase's scheduling parameters; and (3) update the list of

phases known to the automaton based on the new phase's scheduling parameters.

C-34 Scheduling Dependent Real-Time Activities

teve request-phase(v, te.pected) p:

preconditions:
true <No preconditions here so that interrupts and other new phases

can occur at any time>
postconditions:

if (RunningPhase = p) then
if (ExecMode(p) = normal) then

Total' = Total + Value(p)(t.ven)
else

;no value for aborted phase
-release the resources acquired during the phase

;accept values for scheduling parameters
Value'(p) = v
ExecClock'(p) = tepc,,
AbortClock'(p) = 0
ExecMode'(p) = normal
;note that p is not resource-waiting

;make sure p is part of the list of phases, if necessary
if (tCXp :tc > 0) then

PhaseList' = Phaselist { p)
else

PhaseList' = Phaselist - {p}

Stent abort-phase(p) 0:

preconditions:
<Specific to the scheduler under consideration>

postconditions:
ExecMode'(p) = abort
ResumeTirne'(p) = tevcnt

Figure 2-6: Operations Accepted by General Scheduling Automaton

Notice that value is accumulated for the completion of a previous phase only if the currently executing

phase issues the 'request-phase' event, thereby signaling that the current phase has completed execution. If

some other activity issues the 'request-phase' event, it is signaling the existence of a flew phase to the

automaton while a different phase is executing, so no phase completion has occurred.

In addition, no value is accrued for a phase that has been aborted. If, on the other hand, the phase has

completed successfully the value accrued is determined by evaluating its time-value function at the time of

completion.

Finally, since it requires a positive amount of time to accomplish any processing. a texpCed parameter that

is less than or equal to zero indicates that there is no subsequent computational phase for the activity

Scheduling Dependent Real-Time Activities C-35

" teven, preempr-phase(p) S:-

preconditions:
<Specific to the scheduler under consideration>

postconditions:
if (ExecMode(p) = normal) then

ExecClock'(p) =ExecClock(p) - (teven - ResumeTime(p))
else

AbortClock'(p) AbortClock(p) - (te~~ - ResurneTime(p))

" ty.,. resume-phase(p) S:

preconditions:
<Specific to the scheduler under consideration>

postconditions:
ResumreTime'(p) = tevent

* teen request(r) p:-

preconditions:
<Specific to the scheduler under consideration>

postconditions:
ExecClock'(p) = ExecClock(p) - (tet - ResumeTirne(p))

" 'even, grant(p. r. undotime(r)) S:

preconditions:
<Specific to the scheduler under consideration>

postconditions:
ResumeTirne'(p) = teven

AbortClock'(p) =AbortClock(p) + undotime(r) 17

Figure 2-6: Operations Accepted by General Scheduling Automaton, continued

issuing the 'request-phase' event. In that case, the phase is removed from the PhaseList, in all other cases,

the ",hase is included in the PhaseList.

The 'abort-phase' event in the General Scheduling Automaton Framework is similar to the remainder of

the scheduling events: its precondition is automaton-specific and its postconditions specify bookkeeping

that must be done in the event that the event occurs. In particular, the 'abort-phase' event's postconditions

change the phase's execution mode to abort arid note the time that the phase began aborting. In the event

of a preemption, this time (ResumeTime) will be consulted to adjust the phase's AbortClock to indicate the

amount of time required to compl-ic the abort processtng, which will be used in subsequent scheduling

decisions.

17The function 'undo'uneO)' inidicates the amount of time that will be rrquirrd to restore the resource just acquired to an acceptable
state for use by another activity. in many cases, this may simply involve returning the resource to the state it had at the time it was
acquired. In other cases, returning the resource to any of a number of semantically equivalent states may be sufficient or actions may
have to be performed to affect the physical process under controcled. T'he actions required and the amount of time they will take may
vary from sys.tem to system and from application to application. Consequently, for the purposes of this work, they have beeni cast as a
function that acts to indicate their role without apply ing a single definition across all resources or applications.

C-36 Scheduling Dependent Real-Time Acnvities

The 'preempt-phase' event has an automaton-specific precondition. ',u; pc.tconditions handle the

bookkeeping associated with preempting the executing phase. Specifically, ErecClock or AbortCl ,k is

updated to reflect the amount of time still required to complete the normal or abort processing of the phase,

respectively. This is accomplished by subtracting the amount of time the phase had executed prior to the

preemption from the amount of time it still needed to complete processing before it began that execution.

A 'resume-phase' event is used to resume execution of a phase that had been suspended b a 'preempt-

phase' event. The 'resume-phase' event, which has an automaton-specific precondition, simply notes the

time at which the designated phase resumed execution. This time is used to adjust the state components

dealing with the required execution time of the phase whenever the phase is subsequently preempted.

Once again, the 'request' event has an automaton-specific precondition. Its postcondition updaLes the

appropriate state component clock for the phase, depending on its execution mode. This is done to

facilitate the use of a scheduling decision as a result of a request for a shared resource. The updating of the

relevant state components ensures that the automaton will make a decision based on the most up-to-date

information.

The 'grant' event, which also has an automaton-specific precondition, notes the time at which the phase is

awarded the shared resource it had previously retluested and begins execution. Another postcond'tion

increments the AbortClock state component for the designated phase to reflect the amount of time that will

be required to return the shared resource to an acceptable state for another phase in the event that the

current phase is aborted. This length of time may vary from resource to resource, and so is denoted as

undotime(r), a function of the resource in question.

Although the 'request' and 'grant' phase events behave as if the processor is surrendered after each

request, this does not have to be the case. The 'request' event can be immediately followed by the

corresponding 'grant' event to model the situation in which the processor is not surrendered.

Typeface Convention. In the definition of the GSAF, all of the operation definitions - their

preconditions and postconditions - have been presented with a roman (normal) typeface. In the future,

when automata are presented, those parts that are common with the GSAF will continue to be written in a
roman typeface. However, those parts that are different wil be wntten in an italic typeface. Hopefully.

this will allow the reader to focus on those parts of the definition that are different from the general

framework.

2.3.2.11. Active Phase Selection

Although the General Scheduling Automaton Framework contains state components and will accept some

scheduling events, it is not really a scheduling automaton. Rather, it is a framework: a skeleton that has

most, but not all, of the elements of a scheduling automaton. For instance, as was discussed in the previous

section (Section 2.3.2.10), most of the preconditions for accepting various scheduling events are

unspecified in the General Scheduling Automaton Framework. Also, while some postconditions have been

specified, they have not been completely specified.

Scheduling Dependent Real-Time Activities C-37

Another of the more noticeable omissions in the specification of the General Scheduling Automaton

Framework is the lack of a function to select the next phase to execute, Furthermore, not only is this

function not specified. the places in the automaton where it is to be invoked are also unspecified. This is

because different schedulers invoke this 'unction at different times. Therefore, there is no canonical set ot

times (corresponding to a fixed set of points in the General Scheduling Automaton Framework) where all

scheduling algorithms invoke a phase selection function. As a result, this has been omitted from the

General Scheduling Automaton Framework, which acts as a lowest common denominator of sorts among

instance of scheduling automata.

To illustrate this point, consider two simple scheduling algorithms: FIFO scheduling and priority

scheduling. Whenever a new computational phase enters the system - as indicated by a nev, 'request-

phase' event - the FIFO scheduling automaton will note that fact, but will not invoke a phase selection

function to determine what phase to execute. It simply allows the currently executing phase to proceed

until it gives up the processor.

On the other hand, the priority scheduling automaton will make a new determination concerning which

phase to execute: if the new computational phase has a higher priority than the currently executing phase,

then the active phase is preempted in favor of the new phase.

More complex scheduling algorithms may evaluate the phase selection function at other times as well.

For instance, toe DASA algorithm described in Chapter 3 invokes the phase selection function whenever a

shared resource is requested by any phase. It is also conceivable that there are schedulers that might select

which phase to run asynchronously with respect to the given set of schedulcr operations. For example, a

round robin scheduler that gave each phase a turn by offering it a time-slice would make preemption

decisions following evenly spaced clock interrupts. To accommodate such extensions, new scheduling

operations would have to be added to the model. While that is straightforward, it is not required to

investigate the algorithms of interest for scheduling supervisory control systems, and so it would only serve

to complicate the model. Consequently, the scheduling operations included in the model represent a

minimal set that captures all of the relevant behavior within supervisory control systems.

2.33. Notes

A few fairly minor facts can be noted concerrung the GSAF framework The following paragraphs

address some of them. Most of them explain how facets of real applications are. or can be, reflected in the

formal model.

2.3.3.1. Manifestation of Assumptions and Restrictions

Section 2.2 describes th. specific assumptions 4 J restrictions that are employed in this work. A look at

the GSAF framework will reveal how those assumpiens are mantest

The first assumption stated that all time-value functions are restricted to be simple step functions. "he

definition provided for time-value functions in the model in Section 2.3.1 captures that assumpuon directlv.

Scheduling Dependent Real-Time Activities C -39

are often not explicitly recognized as scheduling events. Specifically, the resource-related events -
Irequest' and 'grant' - are directly presented to the scheduler because they may well result in new

scheduling decisions.

This should be contrasted with many other models and operational systems. There, there are two separate

operating system facilities: a scheduler and a resource manager. (See Figure 2-7.) The resource manager

may be representing one or more actual system managers - the lock manager and the semaphore manager.

for instance.

Activity Activity

reuet-haerequest-phase request

Scheduler Resource Manager

Integrated Scheduler &
Resource Manager

Figure 2-7: Organizations of Scheduling Functions

The difference in organization is often sitnificant. When there are separate managers handling access to

resources, they will often make implicit scheduling decisions that are not in keeping with the overall goals
of a real-time system For example. resource managers may service resource requests in a first-come-first-

serve manner In that case, a request may be placed in a FIFO (first in, first out) queue if the desired

resource is not currently available. As a result, not only is the requesting activity blocked when it is
enqueued. it is not even considered by the scheduler again until it has been removed from the queue. In

effect, all of the activities that preceded it in the queue were given precedence over it regardless of the
relative urgency of their time constraints or any other dependency considerations.

It would be much more appealing to apply the same tye of algorithm to select which activity in tel

queue should be receive access to the resource next that is used in selecting which activity should execute

next in general. The work done here does employ such an integrated approach to scheduling, and the

interfaces described in the model reinforce this integrated scheduling notion.

Scheduling Dependent Real-Time Activities C-41

Chapter 3

The DASA Algorithm

The primary algorithm investigated in this thesis is called the DASA (Dependent Activity Scheduling

Algorithm) algorithm. It addresses the dependency concerns described in the pre ..)us chapters in a clear

and natural manner. The algorithm is based on a set of heuristics that deliver the type of behavior required

in real-time systems.

This chapter presents the DASA algorithm. First, the algorithm is described in general terms, placing

emphasis on the rationale for the algorithm. Then a formal defintition is discussed, providing a framework

for careful analysis of the algorithm. Finally, the scheduling example from Section 1.3 is revisited. This

time the DASA algorithm is employed to make all of the scheduling decisions to contrast its behavior with

that of the algorithms previously used.

3.1. Dependent Activity Scheduling Algorithm

In this section, the underlying heuristics for the DASA algorithm will be described, along with the

rationale for their adoption. This should help to explain the high level goals for the algorithm. That

discussion will be followed by an informal definition of the DASA algorithm. (The next section, Section

3.2, will provide the formal definition.)

3.1.1. Rationale for Heuristics

The DASA algorithm was constructed to possess a set of properties, each of which is logical and has

appeal on its own merits. Taken together, they suggest that the algorithm will be quite effective in handling

scheduling problems with dependency considerations.

Before looking at the definition of the DASA algorithm, two important metrics must be understood.

These am the notions of value density [Locke 861 and potential value densirt Value densty is a measure

of how much value (as defined by the application) per unit t .ie will be acquired by executing a phase. In

the cases considered by this thesis, where time-value functions are simply step function-,;, the value density

is the size of the step function - the value - by the required computation time .

191n mome complex cases, more involved time-value functions and less certain computation timc requrcemenl are consideed.

C-42 Scheduling Dependent Real-Time Activities

Potential value density extends the notion of value density to a collection of phases composed of a

designated phase and a set of phases on which it depends. In fact, the potential value density of such a

collection of phases is the total of their individual values divided by the total required computation time for

all of the phases in the collection. Furthermore, since phases may be aborted at any time, aborting phases

must be handled differently than those that are executing normally - an aborting phase contributes no

value, but it does require computation time. Therefore, aborting a computation will always act to reduce

the potential value density of a collection of phases. The advantage that aborts offer is that they may

greatly reduce the delay that must be incurred before starting the execution of a designated computation.

With these metrics in mind, the properties desired for the DASA algorithm can be reviewed:
1. explicitly account for dependencies - account (in terms of both time required and in

potential value available) for not only a phase, but also for other phases on which it depends;

2. minimize effort - apply the minimum amount of effort necessary to allow a phase to be
scheduled (use aborts to expedite this process);

3. maximize returnrbenefit - examine phases in order of decreasing potential value density.
thereby always obtaining the greatest return (in value) on a given investment (of time);

4. maximize the chance of meeting deadlines - approximate a deadline scheduler insofar as

possible;

5. globally oputmize schedule - review the schedule constructed incrementally and
collapse/remove redundant or unnecessary steps.

3.1.2. The DASA Algorithm

Since mutual dependencies among activities may arise during the course of execution, the DASA

algorithm actually has two major parts: the Dependency Scheduling Algorithm, which, given a set of

phases (and their scheduling parameters) without circular dependencies, will select the next phase to be nn,

and the Deadlock Resolution Algorithm, which performs a similar function when there are circular

dependencies.

The following two sections describe each of these component algorithms in detail.

3.1.3. The DASA Algorithm: Dependency Scheduling

The DASA algorithm conforms to the computational model defined in Chapter 2 and meets the problem

requirements, while also possessing the properties listed in Section 3.1.1 above.

The following fragment illustrates how the potential value density (PVD) for a phase p is calculated for

use in DASA:

Scheduling Dependent Real-Time Activities C-43

PVD(p) = 0, ifp is abortingV al(p)+P V (Dep(p))otews

ExecClock(p)-PT(Dep(p)) se

PV(p) = 0, ifp=nullphase
0, if quicker to abortp than to completep
Val(p)+PV(Dep(p)), otherwise

PT(p) = 0. ifp=nullphase
<time to abort p>, if quicker to abort p than to completep
<time to complete p>+PT(Dep(p)), otherwise

Dep(p) nullphase, ifp is ready to run
<phase on which p depends>, otherwise

Notice that this calculation demonstrates a property mentioned earlier: the least amount of time possible

is expended to make the phase ready to run. That is why the decision is made to abort if that will result in a

shorter delay before the phase in question is ready to execute.

For any phase, the set of phases on which it depends, either directly or indirectly, and which must

therefore be completed or aborted before it can run is called its dependency list. In the definition for PVD,
the set of phases examined while evaluating Dep(p) constitutes the dependency list for a phase. The

general concept of a dependency list could also be used by other algorithms similar to DASA, although

their specific definition of the dependency list might vary somewhat to reflect a different set of desired

properties.

A simplified procedural version of the DASA Dependency Scheduling Algorithm is shown in Figure 3-1.

1. create an empty schedule

2. determine dependency list and PVD for each phase

3. if deadlock is detected, use DASA Deadlock Resolution Algorithm

4. sort phases according to PVD

5. examine each phase in turn (highest PVD first)
a. tentatively add phase and dependencies to schedule

b. test feasibility of schedule

c. if feasible, make tentative changes; else, discard them

d. reduce schedule, if possible

Figure 3-1: Simplified Procedural Definition of DASA Scheduling Algorithm

Notice that this scheduling algorithm considers all of the existing phases each time a scheduling decision

is made. Most scheduling algorithms do not do this - they typically consider only those that are ready to

C-44 Scheduling Dependent Real-Time Activities

run immediately, not phases that are blocked awaiting access to shared resources. A cnuca! objective of

the DASA algorithm is to take advantage of this additional information to improve the quality of

scheduling decisions. It is information that the system could always examine. but in non-real-time systems,

there is no motivation to look at it.

3.1.4. The DASA Algorithm: Deadlock Resolution

The work that has been done up to this point focuses on the Dependency Scheduling Algonthm portion of

the problem. The Deadlock Resolution Algorithm must still be devised, although it can be anticipated that

it will have properties and use methods that are similar to those employed by the Dependency Scheduling

Algorithm.

3.2. Formal Definition of DASA

Thus far, the rationale and informal description of the DASA algorithm have been presented. In order to

provide a rigorous specification that will permit analytic study of the algorithm, a more formal definition is

required. That definition is presented in the following section along with explanauons of interesting and

important points.

32.1. The Formal Definition

The formal definition is cast in terms of the automaton model presented in Chapter 2. Remember that a

scheduling automaton examines histories of scheduling events and either accepts or rejects them. A history

is accepted by a scheduling automaton if and only if the sequence of events comprsing the history could

have been generated by the scheduling algorithm embedded within the automaton.

Although all scheduling automata share a common framework, each individual automaton has several

unique parts: (1) its state components; (2) the scheduling events that it recognizes - including the

preconditions and postconditions associated with recognizing each event and the changes that occur in state

component values as a result; and, of course. (3) the scheduling algorithm that is embedded within the

automaton. Each of these parts is formally defined in the sections that follow for the DASA Scheduling

Automaton.

3.2.1.1. DASA Automaton State Components

The DASA algorithm considers all existing phases each time a scheduling decision is made. In the

formal defimuon that follows, let the set of phases currently known to the automaton be represented as JPo,

P).P 2, -.. I

Similarly, let the set of resources currently known to the automaton be represented as {r9 , r1 , r,.

The state components associated with the DASA scheduling automaton are presented in Figure 3-2.

Scheduling Dependent Real-Time Activities C-45

General State Components:

" ExecMode: PHASE -) MODE (MODE is either 'normal' or 'abort*)

" ExecCiock: PHASE -4 VIRTUAL-TIME

" AbortClock: PHASE --* VIRTUAL-TIME

" ResumneTime: PHASE- -TIMESTAMP

" Value: PHASE -4(TIMESTAMP -+ V ALUE)

" Total: VALUE (initially V0)

" RunningPhase: PHASE (initially 'nullpbase&)

" PhaseElect: MODE x PHASE (initially '<normal anullphase>')

" PhaseList: List of PHASE (initially V)

Algorithm -Specific State Components:

* Owner: RESOURCE -4 PHASE (initially 'nuLlphase' for each resource)

" ResourcesHeld: PHASE -4 list of RESOURCE

" ResourceRequested: PHASE~+ RESOUTRCE (initially 'nulliesource'; also note:

ResourceRequested(nullphase) = 'nullesource')

Domains for Value Types:

" MODE: normnal v abort

" PHASE: E (P0 ,1 p, 1-P' v nuliphase

" RESOURCE: e fro, rl, r,,, . v nuliresource

" TIMESTAMP: tine, expressed in Lcks of standard clock

" VALUE: real number _> 0

* VIRTUAL-TIME: real number ! 0 (represents a time duration)

Figure 3.2: State Components of DASA Scheduling Automaton

There are two distinct groups of state components shown: general state components, which are found in

any scheduling automaton, and algorithm-specific state components, which are defined only for a particular

scheduling automaton.

The general state components were discussed in Chapter 2. They include a number of components that

describe important characteristics of each individual phase (Exec~ode. ExecCiock, AbortClock,

ResumeTime, and Value), as well as components that indicate the statu-, of the automaton itself (Total.

RunningPhase, PhaseElect, and PhaseList).

All of the al gorithm -specific state components of the DASA Scheduling Automato)n deal with requesti .ng

C-46 Scheduling Dependent Real-Time Activities

and holding shared resources. The relation Owner indicates which, if any. phase currently possesses each

of the shared resources. The Owner of all unassigned resources is nullphase. The ResourcesHeld relation

associates with each phase the list of resources that have been granted to that phase. And finally, the

ResourceRequested relation specifies which resource a given phase desires. Whenever, there is no

unsatisfied resource request for a phase, the corresponding ResourceRequested value is nullresource.

The bottom portion of Figure 3-2 defines the values that each of the state components may assume. All

of these are general value domains that were discussed when the scheduling automaton model was

presented in Chapter 2. They are repeated here only for convenience - they allow the relation definitions

to appear in context so that earlier material need not be consulted.

An initial value is shown for many of the state components. These values indicate that, at the outset,

there ae no phases known to the automaton, no value has been accrued, all of the shared resources are

available, and the processor is idle. Each of the relations that provide information for each phase in the

system is initially empty since there are no phases. As phases arrive (indicated by issuing request-phase

events), entries are made in each of these relations.

Definitions, or anywhere else]

Each activity/phase has a state associated with it. It is either running or it is blocked. If it is blocked, it

may have been preempted or it may have blocked to wait on a resource that was unavailable when

requested.

Running(p) p=RunningPhase

Blocked(p) p eRunrungPhase

ResourceWaiting(p) = (3r)(ResourceRequested(p)=rAr; nullresourceAOwner(r)* p)

Preempted(p) = Bgocked(p)^ -Resource Wating(p)

Access Queues for Resources. There is one state component that is not present in the DASA Scheduling

Automaton but is commonly found in other scheduling automata for this problem domain: a relation that,

given a resource, specifies the queue of phases that are waiting for access to the resource. That state

component is not found in this automaton because it tends to reflect an ordering among pending requests

for a shared resource - for example, requesters may be served in a FIFO fashion or according to their

priority. While the DASA algorithm will in some sense order such requests, it is done in a completely

dynamic fashion. The needs of each phase, including access to shared resources, are considered along with

the benefit of executing the phase each time a scheduling decision is made.

3-2.1.2. Operations Accepted by DASA ALtomaton

The operations recognized by the DASA scheduling automaton and their preconditions and

postconditions are shown in Figures 3-3, 3-4, and 3-5. Figure 3-3 presents the 'request-phase' operation,

which is used to initiate each computational phase of the activities comprising the application. Figure 3-4

Scheduling Dependent Real-Time Activities C-47

depicts the other operations involving phases that are recognized by the DASA Scheduling Automaton.

And Figure 3-5 shows those operations that deal specifically with shared resources. The following

paragraphs describe each of these operations in detail.

0 teen: request-phase(v, texpected) P'

preconditions:
true <No preconditions here so that interrupts and other new phases

can occur at any time>
postconditions:

if (RunningPhase = p) then
if (ExecMode(p) = normal) then

Total' = Total + Value(p)(teend)
else

;no value for aborted phase
-release the resources acquired during the phase
for r in ResourcesHeld(p)

Owner'(r)=4
ResourcesHeld(p)=6

Value'(p) = v
ExecClock'(p) = texp.cted
AbornClock'(p) = 0
ExecMode'(p) = normal
;note that p is not resource-waiting

-make sure p is part of the list of phases, if necessary
if (ttx p.,ted > 0) then

PhaseList' = PhaseList _ {p}
eLse

PhaseList' = Phaseist - Ip
PhaseElect'=SelectiPhase(PhaseList')
if (p = RunningPhase) then

-gtve up processor until next 'resume-phase'
RunningPhase = nullphase

else
;happened under interrupt-leave 'RunningPhase' alone

Figure 3-3: 'RequestPhase' Operation Accepted by DASA Scheduling Automaton

Request-Phase. The 'request-phase' operation delimits computational phases for an activity. Each

2°Here, the value assigned to one state component (PhaseLis in these postcondlitions is used to determine the value of another
state component (PhaseElec() in the same group of postconditions. In the interest. of convenience and clarity, this hans been done,
rather than writing all of the rw state component values in terms of only the old state component values- Of course, it is prosible to
express the new value of Pha.seElec in terms of the old state component values, as follows:

if Uro > 0) thenl

PhaseEled' = SelectPhase(PhaseLdst k. {pj)
else

PhajeL lecd = .SetctPh'ae(PhajeLst - Ip))

C-48 Scheduling Dependent Real-Time Activities

" t,, aborr-phase~p) 0.

preconditions:
(Running? '.ase--nullphase)A(Phase(PhaseElect)=p)

A(Mode(FhaseElect)=abort)
postconditions:

Exec%4ode'(p) = abort
ResurneTime'(p) =teven(
ResourceRequested(p)=0 ;cancel attempt to acquire more resources
Running? hase' =Phase(PhaseElect)

" teen preempt-phase(p) S:

preconditions:
(RunningPhase--p)A(Runningfhase # nuliphase)

A(RunningPhase # Phase(PhaseElect))
postconditions:

if (ExecMode(p) =normal) then
ExecClock'(p) ExecClock(,p) - (t,,,nt - ResumeTimep))

else
AbortClock'(p) =AbortClock(p) - (tevent - ResurneTime(p))

-note p is not resource-waiting
RunningPhase'=nullphase

"*,,n resum e-phase(p) S:

preconditions:
(RunningPhase--rwllphase)A(Phase(PhaseElect)=p)

AQ')7ase(P/laseElecl) nullphase)A(Mode(PhaseElect)=normnaf)
A - Resource Waiting(Phas e(JPhaseElect))

postconditions:
ResumeTime'(p) = tevent
RunningPhase'=Phase(PhaseElect)

Figure 3-4: Other Phase Operations Accepted by DASA Scheduling Automaton

activity begins with a 'request-phase' operation that declares its needs for its initial computational phase.

Subsequent 'request-phase' events mark the end of one computational phase and the beginning of another.

A final 'request-phase' operation denotes the completion of the activity's last computational phase. Of

course, simple activities may consist of only one or possibly a few computational phases.

The precondition for accepting a 'request-phase' operation is simply true. That is, a 'request-phase'

operation can be accepted at any time under any circumstances. This arrangement allows ncw phases to

arrive at any instant, thus permitting activities to be submitted to the automaton asynchronously, just as

they would be if they were initiated in response to interrupts.

The two arguments associated with each 'request-phase' event serve to specify the anticipated needs of

the new computational phase: (1) v, the time-value function defining the value to the application of

Scheduling Dependent Real-Time Activities C-49

0 t request(r) p.

preconditions:
(RunningPhase=p)A(RunningPhase ; nullp,ase)

postconditions:
ExecClock'(p) = ExecClock(p) - (tevent - ResumeTime(p))
ResourceRequested(p)=r indicate p is resource-waiting
PhaseElect'=SelectPhase(PhaseList)
RunningPhase=nullphase ;give up processor until 'grant'ed resource

* tven, grant(p, r, undotime(r)) S:

preconditions:
(RunningPhase=nullphase)A(Phase(PhaseElect)=p)A(r * nullresource)

^(ResourceRequested(Phase(PhaseElect))=r)
A(Mode(PhaseElect)=norma)

postconditions:
ResumeTime'(p) = te

AbortClock'(p) = AbortClock(p) + undotime(r)
RunningPhase'=Phase(PhaseElect)
Owner'(r)=p ;indicate "p' is owner of resource
ResourceRequested'(p)=6
ResourcesHeld'(p)=ResoucesHeld. r

Figure 3-5: Resource Operations Accepted by DASA Scheduling Automaton

completing the phase at any instant in time; and (2) teipectedl the amount of computation time that would be

expected to execute the phase if there were no contention for shared resources - including the processor.

In addition, there is no indication about the shared resources that will be needed by the phase. This

reflects the belief, explained earlier, that in order to allow a potentially high degree of concurrency, it may

often be necessary to use techniques that preclude the exact knowledge of which resources will be needed

by a computational phase.

The 'request-phase' operation has the longest set of postconditions of any of the operations accepted by

the DASA Scheduling Automaton. This is due in large part to the fact that the postconditions handle the

conclusion of one computational phase and the initiation of another. If the currently executing phase issues

the 'request-nhase' operation, then the operation marks a transition between phases. In that case, the value

accrued by completing the phase is added to the running total for the application, and any shared resources

held by the activity are released. (Note that if the activity had been aborting the computational phase, no

value would be gained by completing the phase, since that simply represents the completion of the abort.)

If the activity that issued the 'request-phase' operation was not executing at that time, then it is a new

activity. There is no previous phase to handle in that case.

Whether or not the computational phase is the first for the activity, the 'request-phase' postconditions

C-50 Scheduling Dependent Real-Time Activities

dictate that the time-value function and expected compute time parameter are associated with the new

phase. The expected compute time parameter is used to initialize a virtual clock, called ExecClock. This

clock indicates the amount of time required to complete the current phase for a given activity.

Other state components are altered as well. AbortClock is similar to ExecClock - it indicates the amount

of time required to abort the current phase of an activity. Each time a new shared resource is acquired

during a phase. AbortClock is increased by a resource-specific amount of time. Initially, it takes no time to

abort a computational phase since nothing has been done yet and no shared resources have been acquired.

Furthermore. ExecMode for the new phase is 'norma', not 'abort'.

It is possible that the 'request-phase' event may signal the completion of the final phase of an activity. In

that case, the required computation time, t exected, is declared to be zero - that is, no more computational

cycles are needed for the activity.

If the 'request-phase' event does mark the completion of processing for an activity, then the phase is

removed from the list of known phases. PhaseList. Otherwise, the phase is a member of PhaseList.

Finally, SelectPhase() is consulted to decide which phase should be executed now. Furthermore, if the

currently executing activity (RunningPhase) issued the 'request-phase' event, it surrenders the processor-

clearing the way to execute the PhaseElect specified by SelectPhase(. (Note that this really has no effect

if PhaseElect is part of the currently executing activity. In that case, wlile the processor will nominally

begin executing the nullphase, it will actually resume execution of the PhaseElect immediately. The

transition to the nullphase is only a convenience in terms of modeling the automaton. After reviewing the

other scheduling events accepted by the DASA Scheduling Automaton, the convention employed

throughout to mark potential changes in execution due to.a preemption. abortion, or unsatisfiable request

should be clear.)

Abort-Phase. As modeled, phases are aborted only as a result of a decision by the scheduling function,

SelectPhase) 2 1.

By convention, each time the executing activity, RunningPhase, makes a new request to either begin a

new phase or to acquire a new shared resource - necessitating a scheduling decision - the activity gives

up the processor, That is. as a postcondition for accepting one of these requests, RunningPhase is set to be

nullphase. This is done to meet the preconditions to accept either an 'abort-phase' or a 'resume-phase'

event. Once the processor is idle, then if the execution mode of PhaseElect is 'abort', then an 'abort-phase'

event can be accepted by the DASA Scheduling Automaton.

The postconditions for this event make sure that the phase is aborting, note the time at which execution

21This should not be viewed as precluding the possibility of an acilvit, aborting a phase autonomously - perhaps due to a failure
within a transaction. Rather, the model can easily be extended to accommodate that possibility: 1f the executing activity decides to
abort the current phase. it issues an 'abort-self event. This event changes the execution mode of the phase to *abort, consults
SelecrPhase() to determine what to run next. and gives up the processor. When the scheduler selected that phase to begin its abort
processing. it would issue an "abort-phase event, and processing would continue as described Above.

Scheduling Dependeni Real-Time Activities C-51

resumed, cancel any outstanding requests for shared resources (since no new resources must be acquired to

undo whatever v.as done to those previously acquired). and designate the new executing phase.

Preempt-Phase. As indicated b% iLs precondition. the scheduler issues a 'preempt-phase' event if the

processor is executing s me phase other than the PhaseElect or the nullphase. In response, the current

Runini'Phasc is suspended. its execution clock (either ExecClock or AbortClock, depending on the

execution mode i is updated to reflect the true time left to free the shared resources held by the phase, and

the processor is left idle.

Of course, the processor will probably not remain idle for long since either an 'abort-phase', a 'resume-
phase', or a 'grant' event will be issued to execute another phase: (1) an 'abort-phase' event is issued for a

phase that is being aborted. (2) a 'resume-phase' event is issued for a phase that is executing normally, but

is not waiting for a resource (that is, it is a previously preempted phase); and (3) a 'grant' event is issued

for a phase that is executing normally and is waiting for access to a shared resource. All three of these

scheduling events require that the processor be idle before they dispatch the next phase. (Along with the
Ipreempt-phase' event, the 'request-phase' and 'request' events also leave the processor idle when

appropriate to set the stage for these phase-dispatching events.)

Resume-Phase. The 'resume-phase' event resumes the execution of a previously preempted phase. The

processor must be idle before a 'resume-phase' event can be accepted by the DASA Scheduling

Automaton, and the phase resumed must be executing normally - as opposed to aborting - and must not

be waiting on access to a shared resource.

The postconditions for the acceptance of a 'resume-phase' event note the time at which execution of the

phase resumed and assign the processor to execute the phase.

RequesL A 'request' event signals that the currently executing phase wishes to access a shared resource.

As denoted by the event's preconditions, such a request can be made at any time while the phase is

executing on the processor.

After accepting a 'request' event, the postconditions for the event update the requesting phase's execution

clock to indicate the exact time left to complete the phase, record the resource that has been requested by

the phase, select the next phase to be executed (possibly the requesting phase), and remove the requesting

phase from the processor.

It should be understood that the decision to suspend the requesting phase's execution is only made to

pro-ide a simple, coherent formal model, not to suggest the actual design of an implementation of the

DASA algorithm. Nonce, for example, that in the formal model, it is quite possible that a phase could
request a resource that is currently available, give up the processor, and immediately be reassigned the
processor as the result of a 'grant' event. This is perfectly fine in the model, but an efficient

implementation of the algorithm should decide whether the processor should actually be turned over to

another phase before ever suspending execution of the c,,rrent phase.

C-52 Scheduling. Dependent Real-Time Activities

Grant. The *grant' scheduling event assigns the processor, which must be idle, to execute a phase that

has been blocked awaiting access to a shared resource. The phase assigned to execute has been previously

selected and is designated PhaseElect.

Once the 'grant' event has been accepted by the DASA Scheduling Automaton, the postconditions

associated with that event record the time at which the phase is granted the resource, adjusts the AbortClock

to indicate the increment in work that is required to undo actions on the newly acquired shared resource.

manipulates various relations to show that the resource now belongs to the designated phase, and starts the

processor executing that phase.

Although there are 'request' and 'grant' events, there is no explicit 'release' event. This is due to the

model of computation that has been adopted. Since all activities are composed of a sequence of

computational phases and all shared resources that ale acquired during a phase are released at the

completion of the phase, there is no need for such an event. Rather, an implicit release of these resources is

performed as part of the 'request-phase' event, which, among other things, denotes the completion of a

phase (as described above).

32.1.3. 'SelectPhase' Function for DASA Automaton

The function 'SelectPhaseO' embodies the DASA scheduling algorithm. As shown in Section 3.2.1.2,

SelectPhaseO is evaluated each time a 'request-phase' or a 'request' event is encountered. In Figure 3-6,

SelectPhaseO is formally defined as a mathematical function. Since this definition looks quite different

than the brief procedural definition offered in Section 3.1.3, a few comments are in order to explain the

utility of this format and its organization.

The algorithm is desnbed as a mathematical function for a few reasons. First and foremost, it is a concise

and precise notation. But it also is more expressive in some ways than procedural definitions. Specifically,

thi, mathematical format is capable of expressing the sequencial nature of a set of operations - by using

functional composition, for example, where each function corresponds to one of the sequential operations.

At the same time, this mathematical format can also express the nondeterminism that is present in the

algorithm definition. For instance, the order in which the elements in a list are examined may or may not

be important. When the order is important, there is a specific method to describe the order. This is said to

be deterministic, in that there is only one correct order. When the order is unimportant, any order will do,

and so this case is said to be nondeterministic. A typical procedural definition cannot readily capture this

nondeterminism. Such a definition would usually have to specify some ordering, even if the ordering was

not critical.

The function 'SelectPhaseo', when given a list of phases, selects the next phase to run and specifies its

execution mode (either 'normal' or 'abort'). Informally, the definition shown for 'SelectPhaseO' in Figure

3-6 determines a set of phases that can feasibly meet their time constraints given all of the information that

is currently known about them. It then selects one of the phases from this set that must be done by the

earliest deadlir and designates it as the next phase that the processor should execute.

Scheduling Dependent Real-Time Activities C.53

All of tk-c phases in the phase list P that was passed to SelectPhase() are considered when constructing the

list of phases that can feasibly execute. Also, as each phase is examined in turn, any dependency that

prevents it from executing immediately are noted and resolved by indicating those other activities that must

precede it in any schedule - either completing or aborting their current phases.

To see how, the definition actually specifies the desired behavior, a closer look is necessan. Towards that

end, consider constructing the definition from the bottom up. WVl-ile a few of the functions appearing in the

definition have already been discussed bnefly, others are totally nev,

The following descriptions constitute an informal definition of the functions comprising SelectPhase().

Often only the "main" or "normal" case value will be discussed for a function. even though its defirution

includes a number of other cases as well--. Tius is because the other cases usually handle degenerate

situations that arise as a result of the recursive iature of some of the function detininons.

To start, remember that a few basic functions were described in Secuon 2.3.1. The, include D eadline()

and Val() and are used in the definitions that follow as basic building blocks.

Also remember that SelectPhaseO is a function that is evaluated within the context of the DASA

scheduling automaton. As such, it has access to all of the state components of the automaton, which in turn

proides acces- to all of the status information for each phase in the system Furthermore. since

SelectPhase() is always evaluated as a result of accepting a scheduling operation, the t,e,, that appears in

the formal definition refers to the timestamp for the a ,

With that background in mind. v -. -an begin to examine the formal defintion of SelectPhaseO in earnest.

Consider first the set of functions that form the dependency lists and evaluate the potential value densities

of all of the phases in the system.

.he function 'Dep(', evaluated for a specified phase, returns as its value the phase that is currently

preventing the specified phase from executing (due to a dependency). If the phase is ready to execute

immediately. then the 'nullphase' is the value of 'Dep()'. Otherwise. the phase has requested a shared

resource and is dependent on the owner of that resource - that is the phase that currently holds the shared

resource - if there is one. The phase holding the. resource must reliruish it beforc the dependent phase

can continue execution.

The resource can be relinqushed in one of two ways either the phase can complete its normal course of

execution or it can be aborted. Both of these alternatives take tine 3 , and the DASA algonthm attempts to

minimi7e the amount of time waiting for the resource So DASA completes the pha,c unless it is faster to

abort :t.

2 W'ur.h ca%',e is to be used to evaluate the fun(tio yipican h depends on the vague of one o' rr. re argumen' to "tfi functioin

Z"As was pointed out earher. a phase that has bern aborted does no! n.iantar,-ou .% reC .'m the %harxi rr'.,)Utnks allocated to it to the
sysrm Rather, the shared resources rnut be piaed IntO a meanrgtui. , rpt'ia 7: s.ii. an! ,- 101h\) Intt', saie prior to their
release It is the processing that puts the sharrd r-sourtes into tLh c accer, ta ie sIates tha 1 1 U,,1une-,s time aeit ,rn abort has beer,

issued for the phase.

C-54 Scheduling Dependent Real-Time Activities

SelectPhase(P)
pickone(mustfinishbv(DL firs:(m(pplist)-Psche.Ied(P))).

where
mpplist =tobescheduled(Pschedd.d(P))

pickone(MPP) =
<norrnal,p>', if <normal.p> E MPPiADep~p)=nullphuse
<abort~p>. if <aborij,> E MPP

A - (Bq)(<normal~q> ez MPP
ADep(q)=nullphase)

<norrnal,nullphase>. otherwise

DL ~(MWPP) =

ifMPP=Z
Deadline(p) I(<normalp> E MPP)

A(Vq)(<norma!.q> E MPP -4 Deadline(q) ? Deadline(p)),
otherwise

PfsheueI) =
ifP=O

P, iffeasible(P)

Pfrosble~p I {P)) where p E PleajtPvXP), otherwise

P leasPV/P) =

61 ~ifp=
(p I(pE P)

A('Vq)(q E P -4 ((P VD(p)! PVD(q))
A(PVD(p)=PVD(q) -.) ExecClock(p)!S ExecClockllq)))).

otherwise

tobescheduled(P)
6. ifP=4,

(<normal,p>)I - dependenc-vlist(p) Qi tobescheduled(P-(p I
if pE P

dependene'. ! sr(p)=
0. if Dep~p)=nullphase
dependencvylist(Dep(p)) k- (<norrnalDep(p)>)

if AbortClockIDep(p)) xecClock(Dep(p))
<abort.Dep(p)> }, otherwise

Figure 3-6: Functional Formr of DASA Algonthm

Scheduling Dependent Real-Time Activities C-55

mustcompletebIdt.P)

(I jj<normal,p> E tobescheduled(P)t.Deadline(p) 5 1]).

otherwise

rnustfinishhbv(t.P)
if P=* v tl, v musrcomp leteby(rY)=0

reduce(t. P, I <norrna!p> I dependencvlisz(p) -nwstfirnshby(r.P- {p I)),
if p E musicomplereby(i.P)

reduce(t.PMPP)
reduce(i.P.MPP- ['<abortip> }). if <aborrip>.<normalp> c- MPP

^~<aborr,p> e mustfinishbv(t-P)
MPP, otherwise

timerequiredby(MPP)=
0, if MPP=6
Exec.Clock~p)+timerequiredby(MPP- f <normalp>)),

if<norrnal~p> E MPP
AboreClock~p)+rimerequiredby(MPP-{ <aborrtp>)),

if <aborrip> E MPP

PVD(p)= 0, if ExecMode~p)=aborr
Val(p)+PV(Dep(p))otews

ExecCiocKip)+Pr(Dep(p))'oteis

PV(p) = 0. if p=nu!Iphase
0, if AborrChork(p) < E-xecClock(.P)
Val(p)+PV(Dep~p)), otherwise

PT(p) = 0. if p=nullphase
AbortClock(p). if AbortClock(p) < ExecClock(p)
ExecClock~p')+PT(Dep(p)), otherwise

Dep(p) = nullphase. if ResourceRequested(p)=nullresource
OwnerlResourceRequested(p)). otherwise

Figure 3-6: Functional Form of DASA Algorithm. continued

C-56 Scheduling Dependent Real-Time Activities

The function 'dependencylisto' uses the information supplied by 'Depo' about the dependencies of

individual phases to construct a list that includes all of the phases that must execute before a specified

phase. 'Dependencylisto' also specifies the execution mode for each of the phases that must be executed

prior to the specified phase. Therefore, the dependency list is actually a set of mode-phase pairs of the

form <modephase>. It is in this function that the decision to minimize the length of time to remove

dependencies is implemented.

The definition of the function is recursive. It initially examines the phase, p. that was given as its

argument. If p is not dependent on any other phase, then its dependency list is empty. Otherwise, it will be

non-empty. Specifically, if it is faster to abort the phase on which p uepends. then the dependency list will

have only one member. <abort,Dep(p)>. Alternatively, if it is at least as fast to complete the normal

execution of the phase on which p depends, then p's dependency list will be constructed by adding

<normalDep(p)> to the dependency list of Dep(p).

Once a dependency list has been determined for a phase, it is possible to evaluate the potenuial value

density for that phase. This is done by the function PVDO, which employs two auxiliary funcuons, Pt,0

and PTO. These functions are sunilar to those discussed earlier in this chapter, in S'ztion 3.1 .3. Thcy total

the value that may be accrued and the execution time that is required jointly by the given phase and all of

the phases in its dependency list. (Note that aborting a phase requires time but yields no value directly.)

These totals are then used to determine the potential value density for the specified phase.

The function PteasttVO examines a set of phases and returns the subset of phases that have the lowest

potential value. In case more than one phase has the same (lowest) potential value density, the phase or

phases tha will consume the least execution time is returned. This choice is made because. when

considering two phases with the same PVD, the phase that executes longer will obtain a higher value than

the one that runs shorter since value is the product of PVD and execution time.

Another group of functions determine the amount of time required to carry out a specified set of

executions and aborts over all of the cntical time intervals, thereby allowing the feasibility of the specified

computations to be ascertained. So, for instance:

" timerequ redby() -- given a set of mode-phase pairs, this function determines the total
execution time required to carry out all of the specified computations;

" mustcompletebyO - given a time and a set of phases, this function identifies those phases that
must complete execution by the specified time,

* mustfinishby() - given a time and a set of phases, thiis function identifies all of the normal
executions and abortions that must finish by the specified time; whereas, mustcompletebv()
identified those phases that had to complete their normal executions by the specified time,
mustfinishby() adds to that group all of the other work that must be done in order to remove
any existing dependencies that might prevent those phases from executing immediately; also
notice that this tuncuun uses another function, reduce(, to eliminate unnecessary aborts from
the resultant list

" reduceO - this function eliminates unnecessary aborts by noticing cases where the same

Scheduling Dependent Real-Time Activities C-57

phase is being both completed and aborted2, but the completion must be done prior to the
abort due to the dependencies currently in effect: of course, there is no need to abort a phase
once it has completed.

*feasibleo - given a set of phases, this function determines whether all of the phases in the set,
along with all of the other computations on which they depend, can meet their deadlines: for a
schedule to be feasible, at every point in time the total amount of time required to complete the
computations that must be done by that time must never exceed the actual time remaining until
that time.

With this set of functions to use as building blocks, it is possible to describe at a fairly high level how to

select the phase that should execute next.

A set of phases that can be feasibly run (given current knowledge of requirements and resources) is

constructed by examining each existing phase ordered by PVD, starting with the phase with the highest

PVD. The functions P.cha.1j) and P aib, () construct this set-. Given a set of N phases, Psc,deuledO

will first (recursively) determine which of the N-I phases with the greatest potential value may feasibly be

executed. Psc.duledO, using Pfe5JO.() and ultimately feasibleo, then determines if the phase with the least

potential value can feasibly be added to the set. If so, it is.

Once Pschd,,dUO has identified which phases can be completed successfully, it is fairly straightforward to

determine which phase should be executed first. The auxiliary function DLfSt() specifies the earliest

deadline that must be met by those phases that can complete execution. That information, along with the

set of phases to be completed, is once again passed to the function musrfnishby() to determine all of the

work that must be done by the earliest deadline. And finally, pickoneO selects a mode-phase pair from that

set to execute first. pickoneO always prefers to complete a phase normally if possible, but if that cannot be

done, it will initiate (or continue) the abortion of a phase.

3.2.2. Observations on the Definition

Several observations can be made now that the formal definition af the DASA Scheduling Automaton has

been presented in full. Each of the following sections focus on an interesting observation.

3.2.2.1. Manifestation of Desirable Properties

Section 3.1.1 listed five desirable properties that the DASA algorithm should possess. Now that the

algorithm has been presented in some depth, those properties should be reviewed again:
1. explicitly account for dependencies - this has been accomplished. The dcF-ition of

SelectPhase() was described from the bottom up. and the first thing that was done in
considering any phase was to determine those phases that it depends on (its dependency list)
and the aggregate value of this group of phases to the application.

24lt is not unexpected that both the completion and the aborlion of a singlt phase will sormetimes be executed. In the expected case.

the phase is aborted in orter to allow some other phL.C, with a tighter deadline, to execute. Later. the aborted phase can be restarted
and completed normally, still meeting its time constraint.

25Note that the fun-ctions that ami named P,0 all represent sets of phases.

C-58 Scheduling Dependent Real-Time Activities

2. minimize effort - this property refers to the amount of effort required to enable a phase to be
ready to execute. The DASA algorithm has minimized this effort by minimizing the time
needed to eliminate each of the dependencies for that phase: if it is quicker to abort a phase
than it is to execute it to completion, than it is aborted. This minimizes a latency, of sorts, at
the possible cost of later reexecuting phases that have been aborted.

3. maximize return/benefit - the use of the potential value density addresses this concern
directly. As outlined in Section 3.1.1, by adding those phase groups (a phase along with the
phases that comprise its dependency list) with the highest PVD to the schedule first, the
algorithm guarantees that no other phase group can attain a higher aggregate value consuming
the same number of cycles, based on current knowledge.

4. ;aaximize the chance of meeting deadlines - this property has been met through the
placement of phases in the tentative schedule that is recursively constructed by SelectPhaseO.
The key observation is that, although phases are considered for addition to the tentative
schedule in order of decreasing PVD, they are actually added to the schedule in an order that
is determined only by the deadlines of the phases being placed and their dependencies: stated
informally, a phase that is to be executed to completion is inserted in the schedule according
to its deadline, unless that time is too late to allow a scheduled phase that depends on it to
complete in time. In the latter case, it inherits the latest deadline that will allow the dependent
phase to meet its deadline.

5. globally optimize schedule - the function reduce() applies some global reductions to the
tentative schedule that is recursively constructed by SelectPhaseo. This is necessary since
each phase is added to the schedule, along with its dependencies, independently of any other
phases that may already be part of the schedule. As a result, it is possible that the abortion of
a phase may be scheduled after the same phase's completion. Although this would have no
real effect on the sequence of phases executed - after the phase had completed, it would
release all of the shared resources it was holding so that the next evaluation of SelectPhaseO
would have no dependency requiring its abortion - it is important to eliminate it from the
tentative schedule so that the most realistic estimate of processor cycle demands can be
maintained.

3.2.2.2. Nondeterminism in Definition

As was mentioned in Section 3.2.1.3, a mathematical form was chosen for the function definitions in part

to allow orderings to be specified when they are important, and to be unspecified otherwise. The

definitions of SelectPhaseO and its subsidiary functions provide examples of each:

" Order matters when determining which phases to add to the tentative schedule. The function
Pshaded~dO selects the phase to be removed from the set P it was given according to the PVDs
and execution clocks of the individuals phases in P. (Even here there is some nondeterminism,
since it is possible - though probably unLikely - for more than one phase to belong to the set
Ptea,,,'(), with each of these phases having the same PVD and execution clock value.)

" Order does not matter when the set of mode-phase pairs that must be in a schedule in order to
successfully complete a given set of phases is constructed. This construction is carried out by
the function tobescheduledo. and in this case, the phase to be removed from the set P for the
next recursive call to tobescheduledO is totally unspecified - any element of P will do.

There are other examples for each of these cases in the DASA definition, but these serve to illustrate the

ability of the notation to capture the essential aspects of ordering without imposing unnecessary constraints.

This clarity may be of considerable benefit when weighing the correctness of alternative implementations

of the algorithm that use different orderings for various evaluations.

Scheduling Dependem Real-Time Activities C-59

3.2.2.3. Explicit Appearance of Time

Time doesn't explicitly appear in many of the individual function definitions. This may be unexpected

for an environment where time - and meeting time constraints - is a central concern. Of necessity, time

explicitly plays a role in testing the feasibility of executing groups of phases. And while this testing occurs

throughtout the evaluation of SelectPhaseO. references to time seem infrequent since phases are added to

the tentauve schedule according to their potential value density, not according to the urgency of their time

constraints.

3.3. Scheduling Example Revisited

Now that the scheduling algonthm has been presented, it is possible to reconsider the scheduling example

discussed in Section 1.3. Once again, the problem is to schedule phases Pa, Pb, and p, so as to meet their

time constraints, if possible. In fact, it is possible, and this is shown by the bottom execution profile in

Figure 3-7. Notice that phase Pa is aborted during the course of execution, thus allowing phase P, to meet

its deadline. This necessitates the reexecution of the start of phase p0 at a later time,

The top of Figure 3-7 shows the execution profile for a scheduler that is identical to DASA, except that it

cannot abort phases. It, too, meets all of the deadlines, while consuming fewer cycles than DASA in the

process. However, it must tolerate a longer delay between the time that it determines that a given phase

should be executed and the tune at which that phase may actually begin execution due to existing

dependencies. This variant of the DASA algonlihm is shown only as a reference point. At this point, it is

not anticipated that it will studied in significant depth as part of the proposed thesis research.

C-60 Scheduling Dependent Real- Time Activities

Phse -7 DASA Scheduler

-- 7 7-7--' (without Aborts)

- t

- - DASA Scheduler

____(with Aborts)

t
* a-:-: :

- - 2 , - I

Figure 3-7: Execution Profiles for DASA Scheduler with and without Aborts

Scheduling Dependent Real-Time Activities C-61

Chapter 4

Analytic Results

This chapter presents a set of analytic results that argue for the benefits of the DASA algorithm. First, a

number of high-level requirements that real-time scheduling algorithms must possess is discussed. Then a

strategy for demonstrating that the DASA scheduling algorithm possess those properties is outlined,

followed by a set of proofs conforming to that strategy. The final section of the chapter discusses various

interesting behaviors that the DASA algorithm may demonstrate, which are revealed by its formal

description.

4.1. Requirements for Scheduling Algorithms

Ar-y practical solution to the problem of scheduling while taking dependencies into account must be

correct, valuable, and tractable.

The solution must be correct. Specifically, any scheduling decisions that are made must observe all of

the known dependencies. Therefore, for instance, any activity that is selected to execute must be able to

execute at that point in time. The solution must also :eey the concurrency control rules of the model, in

particular, for the model presented here, mutually exclusive access to the shared resources must be

guaranteed.

The solution must be valuable. When cast in the computational model described above, this requirement

simply means that the schedules dictated by the scheduler must yield good values relative to other

scheduling algorithms. Notice that this is partially a comment on the scheduler's behavior in normal

situations and parially a comment on its behavior in overload situations. In normal (non-overload)

situations, the ordering of activities is critical and many schedulers will not order them appropriately, even

when there are sufficient processor cycles present to satisfy all demands; in overload situations, the

system/application should display a graceful degradation of function:. Both of these types of situation are

accurately gauged by the value metric previously introduced.

Finally, the solution must be computationally tractable/efficient. That is, the solution must consume, at

worst, an amount of time and space that is polynomial in the problem size - in this case, the problem's

size is the number of phases under consideration by the scheduler.

26LEven scheduler- thai take dependencies into account ma) handic overload situations differtntl',. rxulting r different s.cheduling
decisions, and hence different values, for executing the application.

C-62 Scheduling Dependent Real-Time Activities

4.2. Strategy for Demonstrating Requirement Satisfaction

Analytic proofs have been constructed to demonstrate the correctness, value, and tractability of the DASA

algorithm. These proofs ae contained in Section 4.3.

To demonstrate correctness, it is shown that the DASA algorithm respects any existing dependencies
among phases and makes legal selections. This is accomplished by demonstrating that any phase that DASA

selects for execution is capable of executing immediately. That is. it is shown that DASA will either (1)
select a phase that is ready to run (i.e., is not blocked), or (2) designate that a phase is to be aborted, which
can be executed immediately for any phase, blocked or ready to run. This proof is presented in Section

4.3.1.

To demonstrate value, proofs serve to illustrate that DASA performs well when compared to other
scheduling algorithms in appropriate situations. In particular, when there are no dependency

considerations, DASA can be compared to a number of well-known algorithms. In fact, it is shown that, if

there are no overload conditions, the DASA automaton will accept the same histories as an automaton that
accepts histones conforming to Locke's Best Effort Scheduling Algorithm (LBFsA). Not coincidentally,

this is simply a deadline-ordered history. In overload situations, it is demonstrated that the DASA

automaton will accept histories that the LBESA automaton will not accept, and that these histories may have
a higher value than any history that the LBESA automaton may accept involving the same phases with the
same scheduling parameters. These proofs are presented in Section 4.3.2.

To demonstrate tractability, a procedural version of the DASA algorithm has been developed, and its

complexity has been analyzed to prove that the time and space requirements of the algorithm are indeed

polynomial in problem size - that is, that the time and space required to execute the algorithm are each
proportional to the number of active phases raised to some polynomial power. Both the procedural version

of the DASA algorithm and the derivation of its space and time properties are presented in Section 4.3.3.

4.3. Proofs of Properties

The proofs in the sections that follow demonstrate propettics of the DASA scheduling algorithm according

to the strategy outlined in the preceding section. Each section contains all of the proofs corresponding to a
single property of concern. In addition to the proofs themselves, other material that must be developed to

complete the proofs is also presented. For example, in Section 4.3.2.1, a derivation of another scheduling

automaton is presented This automaton is subsequently used in proofs to assess the utility of the DASA

algorithm.

Scheduling Dependent Real-Time Activities C-63

4.3.1. Algorithm Correctness

There is only one proof in this section. It demonstrates that DASA respects all existing dependencies

among phases by showing that the phase selected for execution can execute immediately. Therefore, no

phase is ever selected for normal execution if it is dependent on some other execution. Of course, a phase

that is blocked due to a dependency could be selected to abort, since it can abort at any time regardless of

dependency considerations.

4.3.1.1. Proof: Selected Phases May Execute Immediately

Theorem 1: Given PhaseList, the set of phases known to the DASA automaton, prove that the phase

selected for execution. PhaseElect, is eligible to run at that point.

Proof. In every case in the DASA automaton. PhaseElect. the phase selected for execution, is determined

by evaluating SelectPhase(PhaseList). The function SelectPhaseO is defined as:

SelectPhase(P) =
pickone(musrfinishby(DLfst(pmplist)Pscheduted(P))),

where
prnplist =tobescheduled(PscheAdWd(P))

and pickoneO is defined as.

pickone(PMP)
'.,zc i.p>, if <normal,p> c PMP

ADep(p)=nullphase
<abortp>, if <aborrp> E PMP

A ('q)(<normalq> s PMP
1,Dep(q)=nullphase)

<normal.nullphase>, otherwise

Notice that pickoneO will return one of three values:

" <normalp>, for some phase p - this occurs only when Dep(p) = nullphase: in that case, p is
ready to run by definition

" <abortp>, for some phase p - any phase may be aborted at any time, even if it had
previously been waiting to access a shared resource; so once again, by definuon, p is ready to
rlun.

" <normalnullphase> - this designates an idling condition, which is always possible, so
nullphase is trivially ready to run-

In each case, PhaseElect is assigned a phase/mode pair in which the phase is ready to run.

EndOfProof

Notice that <normal.auJIphaje> is returned only in the case that there irn no pha.es ready to run in either their normal mode or
their abort mode

C-64 Scheduling Dependent Real-Time Activities

4.3.2. Algorithm Value

Since most scheduling algorithms do not utilize dependency information, it is difficult to make fair

comparisons between their performance and that of DASA when dependencies are involved. Therefore, this

section will compare DASA to an another algorithm (LBESA) in the absence of any dependencies.

Since LBESA was shown in to outperform a number of standard algorithms in a range of situations, a

favorable comparison with LBESA will demonstrate that DASA behaves well.

To that end, the two proofs presented in this section demonstrate that the DASA algorithm performs well

when compared to the LBESA algorithm. They consider a set of activities that are independent of one

another, each of which is described by a time-value function that is a step function. They show:

1. If there is no overload, then both DASA and LBESA yield identical expected value to the
application.

2. Under overload, DASA may schedule more activities than LBESA. yielding a greater expected
value than LBESA.

Before presenting the two proofs, the next two sections develop the formal scheduling automata that they

will use. First, Section 4.3.2.1 presents the LBESA Scheduling Automaton. Then Section 4.3.2.2 presents a

scheduling automaton corresponding to the DASA algonthm when there are no dependencies to consider.

4.3.2.1. LBESA Scheduling Automaton

The LEBESA Scheduling Automaton is cast using the General Scheduling Automaton Framework described

in Section 2.3.2. Once again. each scheduling decision is made based on the set of phases currently known

to the automaton: (p., p, p, 1.

LBESA Automaton State Components. The state components associated with the LBESA Scheduling

Automaton are presented in Figure 4.-1. They are simply the General State Components that every

scheduling automaton contains, and they were described in detail in Section 2.3.2.9.

Operations Accepted by LBESA Automaton. The operations accepted by the LBESA automaton and their

preconditions and postcorditions are shown tn Figure 4-2.

These ae a somewhat simpler version of those presented in Section 3.2.1.2 for the DASA Scheduling

Automaton. Most notably, there are no operations for dealing with resources - in particular. there are no
Irequest' and 'grant' operations. (Of course, in keeping with the General Scheduling Automaton

Framework, these operations actually exist for the LBESA Scheduling Automaton. However, their

preconditions are defined to be false, indicating that events with these operations can never be accepted by

the LBESA Scheduling Automaton.) In addition, there am no postconditions for 'request-phase' to release

previously acquired resources, and the precondition for 'resume-phase' is one term shorter.

The LBESA Scheduling Automaton does not accept 'abort-phase' operations either. This is because the

LBESA scheduling agonthm does not abort activities or phases. Such aborts are not required because the

activities are all assumed to be independent.

Scheduling Dependent Real-Time Activities C-65

General State Components

* ExecMode- PHASE -MODE (MODE is either 'normal' or 'abort'

" ExecClock: PHASE -- VIRTUAL-TIM\E

" AbortClock: PHASE -- VIRTUAL-TIME

" ResumeTime PHASE -- TIMESTAMP

* Value: PHASE - (TIMESTAMP-- VALUE) (initially Value(t) 0)

" Total: VALUE (initially '0')

* RunmniPhase: PHASE (initially 'nullphase')

" PhaseElect: MODE x PHASE (initially '<normal. nullphase>')

" PhaseList: list of PHASE (initially '0')

Algorithm-Specific State Components:

* None

Figure 4-1: State Components of LBESA Scheduling Automaton

When activities are not independent, then aborts must be introduced into the model. Notice that this does

not mean that the scheduler must generate abort signals, but rather, that there must be a way to return

shared resources to acceptable states before allowing other activities to acquire them and to return the

aborted activity to a known state (presumably to handle an abort exception) if it is to have any chance at

continuing normal execution.

References to the 'AbortClock' state component have been left in the postconditions for the 'preempt-

phase' operation merely for convemence wLen comparing it to another automaton. Since aborts are never

used. the clause that deals with the 'AbortClock' state component will never actually have an effect.

'SelectPhase' Function for LBESA Automaton. The function 'SelectPhase()' embodies the LBESA

scheduling algorithm in this scheduling automaton, just as the identic;ally -named function had done in the

DASA Scheduling Automaton. Figure 4-3 shows the definition of this function.

Since Locke never employed such formalisms in his work, he never provided as rigorous a definition for

his scheduling algorithm as the one shown here. And he certainly never provided a mathematical function

corresponding to his definition. As a result, the definition shown here captures Locke's algorithm in this

framework.

There are a number of ways of defining SelectPhaseo, and the one chosen parallels the structure of the

SelectPhaseO function for the DASA Scheduling Automaton in order to facilitate compansons between

them.

C-66 Scheduling Dependent Real-Time Activities

teent request-phase(v, texpected) p:

preconditions:
true <No preconditions here so that interrupts and other new phases

can occur at any time>
postconditions:

if (RunningPhase = p) then
if (ExecMode(p) = normal) then

Total' = Total + Value(p)(tc,,en)
else

no value for aborted phase
;release the resources acquired during the phase
; involves no action for this automaton

Value'(p) = v
ExecClock'(p) = te,eLed

AbortClock'(p) = 0
ExecMode'(p) = normal
:note that p is not resource-waiting

:make sure p is part of the list of phases, if necessary
if (tepected > 0) then

PhaseList' = PhaseList { p
else

PhaseList' = PhaseList - {p}
PhaseElect'=SelectPhase(PhaseList)
ijfp=RunningPhase)then

;give up processor until next 'resume-phase'
RunningPhase=-nullphase

else
;happened under interrupt- leave'RunningPhase'alone

" 'even, preempt-phase(p) S:

preconditions:
(RunningPhase=-p)A(RunningPhase nullphase)

A(RunningPhase t Phase(PhaseElect))
postconditions:

if (ExecMode(p) = normal) then
ExecClock'(p) = ExecClock(p) - (teveI - ResumcTime(p))

else
AbortClock'(p) = AbortClock(p) - (teeni - ResumeTine(p))

:note p is not resource-waiting
RunningPhase'=nullphase

Stevent resume-phase(p) S:

preconditions:
(RunningPhas e=nullphase)A(P hase(P has eElect)=p)

A(Phase(PhaseElect) nullphase)A(Mode(PhaseElect)=norma)
postconditions:

ResumeTime'(p) = reer
RunningPhase'=Phase(PhaseElect)

Figure 4-2: Operations Accepted by LBE.SA Scheduling Automaton

Scheduling Dependent Real-Time Activities C-67

SeleciPhase(P)
pjckonemus fl'1ishbN.(DL (pmphist)_PsedaP).

where
pmplist =tobeschiedu led(Psh ie~)

pickone(PMP) =
<norrnai~nullphase>. if W o
<normal,p> I 'iwrmalp~> E PMP, other-wise

DL firsJPMPP:

if PMP=0
Deadline~p) I (<nornalp> E PM?)

A(Vq)(<normalhq> E PM? --- Deadh nei q Deadhinep)).
otherwise

PschedLeI) =
01 ifp4
PfeLJ);e(?s~hedIJ4 eP(P~i 1)(P)), i fp E PIaszDL(P)

Pfeashe(p) = 0,ifP=
P. iffeasible(P)

.PCiePP) hr p Pevvp) otherwise

PDp)= 0'o.=

(p1I (pG ?=)A(Vq)[q7E P -4((Deadline~p) Deadline(q))
A(Deadline(p)--Deadline(q) -4 PVD(p) S PVD(q)))] (,

othe-wise

Pl,,P ~P) = 0. ifP=o

(p I (P E P) A (Vq)(qc P -4 ((PVD(p) 5?VIDtq))
A(PVD(p)=P1VD(q) -* Exec-Clock(p)! ExecClock(q)))),

otherwise

tobescheduled(P) =(<norrnal~p> I p E P

music ornpleteb ,v(r.P)

(p I [p c- Pt.Deadhne(p)! i d (otherwise

musifinishbv(tYP)=
0. if P=4 V f,ru

v mlustcompletehx (tJ')=)
{<normalp> IpCE mustcornpletebvtt.Pfl otherwise

feasible(P) = fru-e, iff(V()[(z ye,) --- rimerequiredbv (muslfinlshbvN(f.P)) S(te)

rim erequiredby(PMIP)
0. if PMP =4
ExecClcck~p)+timerequired', (PMf- (<normalZp> [. if<normahp> c PM?

PVD(p) = VD~p) Vlp
& ~ecClo k~p .

Figure 4-3: Functional Formn Of LI3ESA Algorithm

C-68 Scheduling Dependent Real-Time Activities

Despite tme degree to which the effort to cast these functions in the same form succeeded, there are still

substantial differences between the two functions. The most important of these is the order in which phases

are added to the tentative schedule by the two algonthms. This difference is seen in the P,5hea

subsidiary function of each definition. LBESA adds phases to the tentative schedule in deadline order,

nearest deadline first. DASA, on the other hand, adds phases to the tentative schedule in order of decreasing

potential value density.

In the eveat that a tontative schedule is not feasible, both algorithms (effectively) remove phases from the

tentative schedule in order of increasing value density or potential value density, respectively. The fact that

LBESA adds phases to the schedule based on one attribute and sheds phases based on another, while DASA

uses a single attribute for both purposes, causes the algonthms to make different scheduling decisions

under certain circumstances. This leads directly to the fact that, under overload, DASA can attain greater

value for an application than LBESA can, as is shown in Section 4.3.2.4.

Locke was silent on some details concerning his algorithm, such as which phase should be selected if two

or more phases shared the nearest deadline in a schedule or which phase to shed if two or more phases had

a common value density that was lower than that of all of the others phases in the tentative schedule.

Whenever possible, these details have been resolved in the manner that seemed to make the most sense.

For example, when two or miiore phases are charactenzed by the same value density, the phase requiring the

least computation time is deemed to be less valuable than the others since its contribution to the overall

value of the application is a product of value density times required computation time. If two or more

phases share the same value density and the same required computation time, then any of the phases may

be chosen.

4.3.2.2. DASAIND Scheduling Automaton

The DASA/N-D28 Scheduling Automaton embodies the simplifications to the DASA Scheduling Automaton

that can be made when there are no dependency issues to consider. The derivation of this simplified

automaton appears in Appendix B. For the sake of convenience, the resulting automaton is presented in

this section.

As before, each scheduling decision is made based on the set of phases currently known to the automaton

and designated as the set (po, p 1.p. ... i.

DASA/ND Automaton State Components. The state components associated with the DASAN.D scheduling

automaton are presented in Figure 4-4. Since the algorithm-specific state components of the DASA

Scheduling Automaton are all used to handle resources, they have been omitted in the DASA.NND Scheduling

Automaton, leaving only the General State Components found in every scheduling automaton. (See

Section 2.3.2.9.)

21 DASA/ND stands for OASA/No Dependencies.

Scheduling Dependent Real-Time Activities C-69

General State Components:
" ExecMode; PHASE --4 MODE (MODE is either 'normal or 'abort')

* ExecCiock: PHASE -4 VIRThUAI-TIMI1E

* AbortClock: PHASE -4 VIRTUAL-TIM.%E

" ResumeTime: PHASE-* TIMESTAMNP

" Value: PHASE--* (TIMESTAMP -* VALUE) (initially Value(t) 0)O

" Total: VALUE (initially '0')

" RunningPhase: PHASE (initially 'nuliphase)

" PhaseElect: MODE x PHASE (initially '<normal, nuliphase>')

" PhaseList: list of PHASE (initially W&)

Algorithm -Specific State Components:
e None

Figure 4-4: State Components of DASAINiU Scheduling Automaton

Operations Accepted by DASAND Automaton. The operations recognized by the DAtSAND SchedUling

Automaton and their preconditions and postconditions are shown in Figure .-5.

Once again, these are simpler than :hose sho/'.n previously for C - DASA Sc heduling Automaton in

Section 3.2.1.2. In fact, largely because the automaton does not have to handle dependencies and abcms.

ts set of operation specifications is identical to that shown in the previous section for the LBESA

Scheduling Automaton. Nonetheless. the two aultomata a ,not identical since- their 'SelectPha.seO.'

functions differ significantly.

'SelectPhase' Function for DASA/1ND Automaton Figure 4-6 shows the definition ot the *SelectPhaseQ)'

function for the DASA/Nt Scheduling Autornatoin

This definition is structurally similar to thc definition for 'ScectPhaseO)' found in the LBESA Scheduling

Automaton. But, although many of the functions arc identical, dhere are some critical differences.

The most noticeable I £-ference is the abs;ence of the suhsidiapry function PI.,DO -hich locates the phase

with the latest deadline. A less noticeable difference is invocation of rather than PlaIDL0 * in the

det-iition of P,,1,dW1J)* In fact, it is jthat orders *0'ie phases a-s they are added to a tentative

schedule for both the LBESA and the D.As,v D Scheduling Automata. Since the DAsA,!ND Scheduling

Automaton adds phases to the schedule in order of decrea.-ing potential value density,. it has no need for

P astLO.

C. 70 Scheduling Dependent Real-Time Activities

tevent request -phase(v. texpecled) P:*

preconditions:
true <No preconditions here so that interrupts and other new phases

can occur at any time>
postcoriditions:

if (RunrungPhase = p) then
if (ExecMode(p) = normal) then

Total' = Total + Value(p)(event)
else

;no value for aborted phase
release the resources acquired during the phase

,inv'olves no action for this simplified automaton
Value'(p) = v
ExecC~ock'(P) = texpctd

AboriClock'(p) = 0
ExecMode'(p) =normal
note that p ig not resource-waiting

,make sure p is part of the list of phascs. if necessary
if (tpce > 0) then

PhaseList' = Phase~ist j (p
elIse

PhaseList' = Phase~ist - f{p)
PhaseElect'=SelectPiiase(PhaseList')
iflp=RunningPhase)then

-give up processor until next 'resume-phase'
Runni ngPhase-nullphase

elIse
;happened under interrupt-leave'Ru nning Phase'a lone

" t,,, preempt -phase(p) S:

preconditions:
(RunnzingPhase-p)A(RunningPhase nullphase)

A(RunningPhase * Phase(PhaseElect))
postconditions:

if (ExecMode(p) =normal) then
ExecClock'(p) =ExecClock(p) - (teven- ResumeTime(p))

else
AbortClock'(p) =AbortClock(p) - (te.... - ResuxneTime(p))

:note p is not resource- waiting

Runni ngPhase'=rullphase

" te,n resume-phase(p) .

preconditions:
(RunnlingPhase-nullpkase)A(Phase(PhaseElect)=p)

A(Phase(PhaseElect) # nullphase)A(Mode(I'haseElect)=norma1)
postconditions:

ResumeTirne'(p) = tevt
RunningPhase'=Phase(PhaseElect)

Figure 4-5: Operations Accepted by DASAAND Scheduling Automaton

Scheduling Dependeni Real-Time Activities C-71

SelectPhase(P)
pickone(musrf-inshb(DL s(PMPl"s)Psheuid/P))),

where
pmp list =tobescheduled(Pch~d Cd(P))

pickone(PMP)=
<nornalnullphase>, if PMfP~o
<normal,p> I <normalp>e EP.p otherwise

DLfrs(PMP)

if PMWP=)
Deadline(p) I (<.normal4p> E: PMfp)

A(,Vq)(<JlorMal.q> E PMP --* Deadline(q) Deadline(p)).
otherwise

Psch~ded~i)

C). if P-)

Pfraszie(pscheduieI ('p1P)) -(P). ifpE P E 1 P

pfe.sbl(P) = C). ifP=oC
p, iffeasible(P)
Pfeasibje(P'(p)),where po E ~PtewPP). otherwise

p leaspl!P) = 0. if p=c
{p I (p EP) A (Vq)(q E P -.)((PVD(p) PVD(q))

A(PV'D(p)=PVD(q)-- ExecClock(p) ExecClock~q)))),
otherwise

tobeschedu led(P) = <norrnal~p> IpP PI

mustcompletebv(tP)
0 ' if

p I [p E PA.Deadline(p) 5t] 1, otherwise

mustfinishbx(t.P;

C), if P=C v Itvn
v mustcomplerebyO'.P)=:4)

<normalp> I p E must comp leteb N(r 1') 1, otherwise

feasible(P) = true. iff (Vt)[(t ! y.,e,,) --4 tirerequiredbv(musifinishby(r.P)) 5 ('tye,)]

timerequiredbv(PMP) =

0. if PMP=O
Exec-Clock(p)-.timerequiredbv(PMP-- <normalp>)). if <normnalp> E PMP

f'VD(p) Val(p)
ExecClockip)

Figure 4-6: Functional Form Of DASA/ND Algorithm

C-72 Scheduling Dependent Real-Time Activities

As was mentioned in the previous section. this difference in schedule construction may allow the

DASA .D Scheduling Automaton to accumulate a higher value for an application than the LBESA Scheduling

Automaton This will be illustrated by the proof in Secuon 4.3.2.4.

4.3.2.3. Proof: If No Overloads, c{DASA) and LBESA Are Equivalent

The introduction of the two scheduling automata in the previous sections has set the stage for the proofs

in this section and the next. The proof that follows demonstrates that if there are no overloads, hen both

automata will accumulate the same value for the application - that is, both algorithi.is will make the same

scheduling decisions. In fact. both automata will accept the same sequence of events as the scheduling

automaton embodying a deadline scheduler. As stated earlier, a deadline-ordered schedule is known to be

optimal for a uniprocessor when there are no overloads.

Theorem 2: Consider (I) a set of independent activities each comprising a single computational phase

that is characterized by a simple time-value function - a step functon with a positive value before a

designated critical time and a value of zero after that time (that is, each phase has a hard deadline) -

where (2) there are sufficient processor cycles to allow all of the phases to meet their deadlines. Given two

automata, one designated DASA that accepts histones cor-responding to schedules generated by the DASA

Scheduling with Dependencies Algorithm and one designated LBESA that accepts histories corresponding to

schedules generated by Locke's Best Effort Scheduling Algonthm, show that whenever 1) and (2) hold.

every history that is accepted by LBESA is also accepted by DASA that has equal value. Thus both automata

yield equal value for each such history.

Proof. For the sake of simplicity, since LBESA cannot handle dependencies among phases, this proof will

be carried out by comparing the L-PESA automaton with the DASAD automaton - a simplified version of

the DASA Scheduling Automaton that contains no dependency considerations. The DASAND automaton is

defined in S.ction 4.3.2.2. Furthermore, the only histories being examined by the automata are histories

that do not involve overload situations.

Proof by induction.

Basis. Show that (1) if LBESA accepts the first event in a history, DAS.A.,ND will also accept it, (2)

RunningPhase, PhaseList, PhaseElect, and Total are the same for both automata, and (3) Value, ExecClock,

ExecMode, and ResumeTime are the same for each active phase in both automata.

Initially,

RunningPhase=-nullphase
PhaseList-
PhaseElect=<normal.nu llphase>
Total=O

As a result, the only event whose precondition for LB-SA may be satisfied is 'request-phase.' Therefore,

the first event in any history that LB.SA will accept must be a 'request-phase.'

Scheduling Dependent Real-Time Actvities C-73

In that case, let the first event in the history be:

tevenl request-phase(v'te, ecedl) P I

LBESA accepts this event - its precondition for accepting it is true - and as part of its postconditions, it

sets:

Totar=O
Value'(p1)=v

ExecClock'(p,)=texpeciedl

ExecMode' (p,)=normal
PhaseList'= [p I I
PhaseElect'=SelectPhase(PhaseList)

<normal,p,>, iffeasible{P)
<normalnullphase>. otherwise

DASA,.',1 also accepts this event - its precondition is also true - and, the state component changes

induced by the postconditions for the event include those made by LBESA.

Therefore, DASAiJD accepts the first event in any history accepted by LBESA. Furthermore,

RunningPhase, PhaseList. PhaseElect, and Total are identical in both automata after accepting this event.

And finally. Value. ExecClock, and ExecM ode are the same in both automata after accepting the event for

the only currently ?ctive phase. p,, while ResumeTime is not vet defined for an, phase in either automata

- and so is trivially the same in both.

Inductive Step. Given that DASA.N"D has accepted the first n events in a history that LBESA accepts: that

RunningPhase, PhaseList, PhaseElect, and Total are the same for both automata after accepting those

events, and that Value, ExecClock, ExecMode, and ResumeTime are the same in both automatd for each

active phase after accepting those events; show that DASAND will also accept the n+lP event in the histor,

if LBESA accepts it, that RunningPhase, PhaseList, PhaseElect, and Fotal will be the same in each

automaton after that event is accepted, and that Value. ExecClock, ExecMode, and ResumeTime will be the

same in each automaton for each active phase after the n+lsf event is accepted.

LBESA may accept any event for which the precondition is satisfied. In this case. it may accept an

appropriate:

" 'preempt-phase'

" 'resume-phase'

" 'request-phase'

The precondition for accepting each of these events is the same in both automata- The preconditions

depend only on the values of RunningPhase. PhaseElect, and the parameter p. Hence if LBE.SA accepts the

n+lSt event, DASA.N-D will also accept it since, by inductive hypothesis. it has the same values for the

relevant state components, the same parameter values, and the same precundition as LBESA.

Next, it should be demonstrated that RunningPhase. PhaseList, Pha.eF,'c,. and Tota' are the same for

C- 74 Scheduling Dependent Real-Time Activities

both automata after the n'sP' event is accepted, and that Value, EvecClock, ErecMode, and ResumeTime

are the same for both automata for each active phase after that event is accepted.

Consider each of the three possible events:

I. 'preempt-phase' - in both automata. RunningPhase' is set to nullphase while PhaseElect
remains unchanged, and therefore equal. Also in both automata. ExecClock'(p) is
conditonally assigned a new value. In both automata, the condition -
ExecModetp)=normal - is idenucal, p is the same in both since it is part of the n+1 st event,
and by inductive assumption E.ec.Wode(p) is the same in both automata. Consequently.
either both or neither of the automata will update ExecClock'(p). Finally, note that the
formula used to update E.xeLClock'(p) is the same in both automata, EieLClock(p) and
ResumeTime(p) are the same in both automata by inductive assumption, and t .,, is the same

in both since it is part of the n+s event and so is independent of the state of the automata-
Therefore, ExecClock'(p) will be the same in both automata if it is updated.

2. 'resume-phase' - in both automata. RunningPhase is set to PhaseElect, which has the same
value in both automata after accepting the first n events, while PhaseElect remains
unchanged, and therefore equal, in both automata. Also, ResumeTime'(p) is set to t. . This
assignment results in the same state for ResumeTime'(p) in both automata since ResumeTime
v, as the same in both automata for all active phases after the first n events had been accepted
and t is the same for both automata because it is part of the n+lJ event and so is
independent of the states of the automata.

3. 'request-phase' -

o RunningPhase: in both automata, RunningPhase' may conditionally be si to nu.,-;,ase;
in each automaton, the condiuon under which this is done - p=RunningPhase - is
the same. RunningPhase is the same by inducuve hypothesis. and p is the same since it
is part of the nl s' event and has a value that is independent of the state of the
automaton-

*PhaseList: in both automata. PhaseList' will conditionally be set to either
PhaseLisr{p) or PhaseList - [p); in each automaton, the condition under which this
is done - texpecred>O - is the same, PhaseList is the same by inductive hypothesis,

and p and t eipected are the same since they are part of the n+s 1' event and have values
that are independent of the state of the automaton.

* PhaseElect: in both automata. PhaseElect' is set to SelectPhase(PhaseList). As argued
in the previous bullet. PhaseList' is the same in both automata. Now consider the
function SelectPhase() for each automaton. Most of the subordinate functions involved
in the definition of SelectPhase() are identical in both automata. In fact the only
subordinate function that differs is PschejdO - although the form is the same in
both. the specific ordering of recursive functional evaluations is different in the two
automaton defiirtions.

It is given that there are sufficient processor cycles available to allow all of the phases
to meet all of their deadlines. In terms of the mathematical formulation of these
automata, this is equivalent to saying that (VP)feasihle(P)=true - that is, it is feasible
to schedule all of the known phases at any given urme. 29 In that case, for both automata
the defirtion of PfC 5b,() can be simplified from

Pfeas,j(P) = 0, if P=6
P, iffeasible(P)
Pfeasj(P-{p }), wherep E P1,,,apv(P), otherwise

'T-his property is maintained through an entire history becaute both automata accept deadline-ordered histone si there are no
overload conditions, and a deadline-ordered schedule will be guaranteed to meet all of the deadlines if there are %utficient processing
cycles available.

Scheduling Dependent Real-Time Activities C-75

to

Pfeastb'e(P) = ifP=o
P, iffeasible(P)

and. finally, to

Pt.w(P)= P

Since PfeasibleO acts as an idenuty function, the defintion of PschdtedO can also be
simplified from

Pscheduie(P) =
if P=o

Pflble (P sche,,ed(-p P P ifp E P,(P)

to

P schea~adejP) =

o, ifP--
Psch ,eldej P - })'(p)} ifp E P (P)

which is equivalent to

Psched1e,(P) = P

Of course, the definitions of SelectPhaseO for both automata are now exactly the same.
The evaluation of SelectPhase(PhaseList') depends on the values of PhaseList(.
ExecClock', and Value', all of which are shown to be the same for both automata after
the n+ls event in the history is accepted. The value also depends on t,,, which is the
same for both automata since it is part of the n+l,, event and is therefore independent
of the state of the automata. Consequently, PhaseElect' will be the same for both
automata.

" Total: in both automata, if RunningPhase=-p and ExecMode(p)=normal, Total' will be
set equal to Total+Value(p)(t,); otherwise, Total will remain unchanged by the
n+Ist event. Since by inductive hypothesis RunningPhase and ExecMode are the same
in both automata, and since p is the same in both automata since it is part of the n+],t
event and consequently has a value that is independent of the state of the automata, the
condition under which Total will be updated by the n+lst event is the same in both
automata. Also, since Total and Value are the same in both automata by inductive
hypothesis. and p and are both part of the n+1, event, the computed value

assigned to Total is identical in both automata.

" Value: in both automata, Value'(p) is unconditionally set to v; in each automaton. p and
v are the same since they are part of the n+.i event and have values that are
independent of the state of the automaton. Since Value had been the same in both
automata after n events were accepted and since both automata set Value'(p)-v, Value'
is the same in both.

" ExecClock in both automata. ExecClock'(p) is unconditionally set to teeCxed: in each

automaton, p and t are the same since they are part of the n+1sr event and haveexperied
values that are independent of the state of the automaton. Since ExecClock had been
the same in both automata after n events were accepted and since both automata set
ExecClock'(p)=texpecred. EaxecClock' is the same in both.

" ExecMode: in both automata, ExecMode'(p) is unconditionally set to normal; in each
automaton, p is the same since it is part of the n+15 ' event and has a value that is
independent of the state of the automaton. Since ExecMode had been the same in both
automata after n events were accepted and since both automata set
ExecMode'(p)=normal, ExecMode' is the same in both.

" ResumeTime: in both automata, ResumeTime remains unchanged.

C-76 Scheduling Dependent Real-Time Activities

Thus, if LBESA accepts any of these event types as the n+1 event in a history, so will DASA.ND, and the

significant state components of each automaton will be the same at that point.

Therefore, by induction. DASA",D. and hence DASA itself, accepts any history accepted by LBLS.A under

the conditions outlined in the theorem statement. Furthermore, because the state component Total will be

the same in both automata after accepting a history, both will yield the same value for any history that they

accept.

EndOfProof

4-3.2.4. Proof: With Overloads, DASA May Exceed LEESA

The preceding section showed that the DASA Scheduling Automaton performed well when there were no

overloads. in this section. it is shown that, when there are overloads, the DASA Scheduling Automaton may

accept histones that yield higher values for the application than any history that may be accepted by the

LBESA Scehduling Automaton. The reason for this has been mentioned previously in Sections 4.3.2.1 and

4.3.2.2: although both algorithms use similar value density metrics, they construct schedules in different

ways, potentially resulting in situations where LBESA sheds some phases unnecessarily.

Once again, for the sake of simplicity, since no dependencies are involved, the DASA,,ND Scheduling

Automaton, rather than the DASA Scheduling Automaton, is use in the following proof. The result,

however, applies to the DASA Scheduling Automaton as well.

Theorem 3: Consider (1) a set of independent activities each comprising a single computational phase

that is characterized by a simple time-value function - a step function with a positive value before a

designated critical time and a value of zero after that time (that is, each phase has a hard deadline) -

where (2) there are insufficient processor cycles to allow all of the phases to meet their deadlines. Given

two automata, one designated DASA/ND that accepts histones corresponding to schedules generated by the

DASA Scheduling with Dependencies Algorithm and one designatcd LRESA that accepts - istorics

corresponding to schedules generated by Locke's Best Effort Scheduling Algorithm, show that there are

situations where (1) and (2) hold and DASA.ND will accept a history with a greater value than any history

LBESA will accept involving the same phases and the same scheduling parameters (time-value functions and

required computation times).

Proof. This proof is carried out by constructing an example.

Intuitively, LBESA constructs a complete schedule by considering each phase in order of its deadline,

nearest deadline first- As each phase is considered, an estimate is performed to determine whether there is

an overload situation. In that case, it discards the phases with the lowest value densities until a feasible

schedule is obtained. In the process, it may discard some phases unnecessarily. DAS,.ND also constructs a

schedule from scratch; however, it begins with the phase having the greatest value density and considers

subsequent phases in decreasing order of value density. Each phase is included in the schedule in order of

its deadline if the schedule - including that phase - is feasible. Since this approach includes as many

Scheduling Dependent Real-Time Activinies C- 77

high value density phases as possible and only discards those phases that cannot be added to the schedule.

rather than those that have lower value densities than one that must be d:arded.it avoids the problem that

LBESA encounters.

An example of DASA/,NL,) accepting a history with a greater value than LBESA will accept can be

constructed using phases with the following parameters:

Phase Deadline Required V alue
Cornputation Time

PI 2 t, t'a+ IV1

p2 2t, tav

L p3 2t',-1 ta -I

Let t,, 1 and v1, v2, 03 > 0. Also, let vl(+)v/~3(-)indicate the initial relationship of the

value densities of the thiree phases. pI,p2, and p3. respectively. Now,% consider the following histor-v. H,:

ti=0- request-phase(stepo.vl. 2ta) t.a I pi

t= 0- request-phasestep(vL'. 2ta,), t,,) P27

ti= 0 request -phase(ste p(v 3, 2t,-l1), t,-.I) p!

t= 0. resume -phase(p3) S

5=~ t,,- request -phase(step(0. 0) p3

t= (t,-1)' resume -phase(p 1) S

t= 2t, request -phase step(0. c 0) p1

This history is accepted by the DA5.ND automaton and has a value of V'1+1-3, but is not accepted by the

LEESA automaton. In fact. the only histonies that LBESA accepts with only these three pha~ses and the same

scheduling parameters have value vl or lI'ss. The following sections demonstrate each of these facts in

turn.

DASAJND Automaton Accepts Hi~story HP By follo'xing the DAS.\NI automrat.n through the state

changes accompanying the acceptance of each individual event in the lustor.., this scct ion %;ill demonstrate

that history 11, is accepted by DASAA-D. For reference. the DASA.N-) automaton was dcfined in Section

4.3.2.2.

According to the automaton definition, initially:

Total=0
Runni ngPhase--nullphase
PhaseElcct=<normnal.nulphase>
PhaseLis'=

The following labeled steps demonstrate tie acceptance of eac:h event in iistcir\ U. ani detail the changes

in state component values that accompany each event.

C- 78 Scheduling Dependent Real-Time Activities

Event 1: t1 request-phase(step(v 1. 2t,). ta+l1) p1i

event parame ters:

tevn = i= 0-
v = step(vl.2t)

texpected = ta+

p =pl

precondition: true (so the event is accepted)

postconditions:

Value'(pl)=step(vl.2ta)
ExecClock'(p 1)='a. 1
AbortClock'(P1*)=
EixetMud'e'(P 1)=rocrrnn!
Phasebist'=-Ox)Jp1I) =L f I (-;r.e !expectad> 0

PhaseElect'=SelectPhase((p 11)

Event 2: t 2 0- request-phase(step(v2. 2t,), ta) p2

event parameters:

'en,= 2=0

V = step(v2.2ta)

texpecf ed = a
p =p2

precondition: true (so the event is accepted)

postconditions:

Value&(p2)=step(v2,2ta)
Execlock'(p2)z=a
A bortClock'(p2)=O
ExecM ode' (p2)=normal
PhaseList'={pl }ujp2)=(plp2) (since tefdO
PhaseElect'=SelectPhase((p I,p 2))

Event 3: t 3 0 request-phase(stepv3. 2 t.- I), t,,-) p3

event param ters:

v = step(v 3.2 a~-1)

terpected =- I

p =p 3

precondition: true (so the event is accepted)

postconditions:

Scheduling Dependent Real-Time Activities C-79

ExecClock' p3 1=r,- I
AbortClock'(p3)=O
ExecAfode4 p3 =normalI
PhaseLis'=jpl.p2 I,(-p 3)=jp1.p2.p3j (since epieO

F'haseElect'=SelectPhase({pl I.p2.p3 1)

Evaluating Select'hase((pl p2.p3))

SelectPhase({pl,p2.p3 J) = <pp23IM
pi ckone(musflmshby(DLiS(P~pflist)Phd.d {i.p 3))

where
pmpiist =tobescheduled(PSCh~di (Pl p2 ,p3)))

(shd~ ,(p~ 2 p3 = ed e(p1ip2)).i(p3 1) (since PeastPXI (tp1 p2,p3))=[p 3))

P sfhadul ede(p 1 ,p 2 1)J ' I", j j I (-' p 2 I)(s i n c e P l e a sP I {l p l p j~ I) = (p 2))

PschedueI 1 P'P))
P feassbI e(pschedudedo(O - Pl (since PIeasgPV [P'))=P')

~P f,'(OQ'IPll)
pfiasible(I '1

=p)f, iffeasible((plI)

feasible((pl I) = true,
iff(Vz1)Uz ,,~) -4irnerequiredbyN(muscfirishby%(t.(p11) S'eed

For t 2

mustfinishbt[plI)
01 ~i f must comp let eb.N(tIpl I =

< <norrra lp> Ip E m us c omp let eby (t, p I)))
offherwise

musi'completeby ,pl I
=Ip I [p E I p I)ADeadlinie(p) 5t])I

=, ift<Deadlinze(pI)=21t,

(pl I if t 2Deadline(p I)-2 ta,

Therefore ...

C-80 Scheduling Depenident Real- Time.Acti vities

mustfinishbY(t,p Ip1
0, if ft<2ta
(<normal~p> Ip Ef p1 I1 othenA ise

=0, if i< 2ta,

{ <normal~p I>, otherwiseu 2t

timerequiredb-x'(musrfinishbv(t,{pI 1))=

= i merequi redb'do), if I<-2r

rimerequiredby((<normal~p > (). if t 2t,

= 0. if tr-2rta
ExecClock(pl1)=ta+ 1, if t 2t

Notice that for [te~e=O, when t < 2 t.

timerequiredbx,(mustfinishbv(t,(pl 1)0(~Ye) as required for feasibility

And when t -2t,

rimerequwredbv%(musrfinishbv. (zlpl 1))=t ~l ~<I vn~

as requi-red for feasibility

Therefore

feasible((pl))=true --4 P ~chedl IP 1)'=(pi

Continuing..

Pschedule]P
1 p 2))

- Pa,,5{(Pl k.-'1p2))

- feas,bIe({P
1 'p2))

To evaluate 'eOsLI,((pip2)..

feasible(()pl.p2 }) = true, iff(Cvr)[(r terem)
-* timerequiredbv(mustpinishbyv(t.(pip2 9) (t-retenjJ

Fort e n

mustflnisk4b(.(pIp2})
0, if mustcomplei'eb (t.(pIp

2))=
<normal~p> I(p e nustcompleteby(t. (plp2))),

otherwise

rnusi'corpleteby(t. (p1 p2))
-(p I(p c (p lp2 IADeadlinep) 5t I

-. ift<Deadlinepl)=Deadlhnetp2-)=2t.
(pip2). ift Deadlinepi' =Dt'adline(p2)=2z t

Scheduling Dependent Real-Time Activities C-81

Therefore..

mustfinishby(t,[plp2))
= C) if t<2tr
{<norma'.p> Ip E (p lp2J) otherwise

= C, if12t
<normalp I >,<norrna,9> 1,otherwise (1 21")

rimerequiredby-(musrfinishb 'N(t, (p p2 1))=
= timerequiredbv(o). if1<2! 2

timerequiredby({ <normal.pl>.<normal~p2>),
if z 2t,,

= 0, if t<2r0
ExecClock~p l)+Execlock(p2)=2t0 + 1, if t1 2t,

Notice that for t= 2 ta..

timerequiredby(mustfi nishbv(t, (p lp2}))=2ta+ I > t-tten

This violates the requirement for feasibility, therefore..

feasible(i p1 .p2 I)=false
-- f~ib~e([pl1 p2 l) =Pjasib~e([Pl D) (since Pj,, ,,pj(Iplp2])={p 2 j)

= pt) (as shown above)
-4 P ~ p 1 1 (since Psh~d,r,l p ,eaJ ~({P P)

Continuing ...

= pfOastb(pshdljd(pIp2))sj(p3 1) (as shown above)

= fiasible({P)'u)p31)

= feosib~e([p
1'p 3)

To evaluate PfeashIe(lp'3) ...

feasible((p lp3)) = true, f(t[t. ee'
-4 timerequiredbvi(musfinishbv(I, IpI p3)) 5 tte,)]

Fort r

C-82 Scheduling Dependent Real-Time Activities

mustfinishbv(tjplp3))
0, if mustcompletebY(t. fpl p31))O
I <normai~p> I p e mustcompleteby(t.Ipl Lp3})}

otherwise

musicomplereby(t J.pL p3 })
= (p I (p E (p Ip3) AtDeadline(p) 5 t])

= 6. if t<Deadline(p3)=2t,,-1

[p3), if Deadline~p3Y-21,-l 5 t
<Deadline~pl*1 ,

Thrfr plp 3), if t !Deadline(p l)-2ta

mustfinishby(t. (p 1,p3 I
0. if I <2t"- I

f <normalp> Ip E 1p3) if, 2t,- 15t <2t,

(<norrnalp> Ip E Ip1p 3) 1, if2t,! St

0. ~if t<2t,- I

f<normailp3>). f2, 5t<2,
{<normailp I>,<norma!.p3 >), if 21a 51

rmerequiredbv(mustflnishby(t.Ipl p3)) =

= iImerequiredby(o), if t <2t,- I

timerequiredby((<uiormalp3>1). if 2t,- 1 t<2z2

timereqzuiredbv(i <normalpI >,<normal~p3>))

0. ift <2t, -I

ExecClock~p3).'ta-1. if 2: -1 <t<2t,
Exec-Clock(p 1)-iExecClock~p3)=2ta' if 2'a!51

Notice that for t teen=O whe ft < 2t.- ..

tirnerequiredby (musrfinishby(t.1plp 3))=O 5 -. ~) as required for feasibility

When 2ta'-11<2 ta..

timerequiredby(musrfinishby(t, 1plp 3))'=a1< tl ! (1-tv
as required for feasibility

And when t !2t,

zimnerequiredby(mustfinishbyv(t.)p Ip 3 1))=2t,,!
as required for feasibility

Therefore..

feasible({pl~p3))=true

Pjfa,,hIe((p1 p3 1)={p 1 p31

Scheduling Dependera Real-Time Activities C-83

So PscheduedJ(plX.2, 3 1), the set of phases that can
feasibly be executed so that each will meet its deadline whie contributing
the maximum value to the system for the investment oi a given amount of
time, has now been determined. Next, the individual phase from this set
that will be executed first must be determined..

pmplist = toechdld(shdue~pl p2Ip 3 1))
= tobescheduled(jpi p3))
= { <normalpl>,<normalp3> I

DLfir,,(pmplist) = DL rv(<normalp Ip>,<normalp3>}
= 2t, -lT

mustfinishb(DLiP..f(pmplis)Pschedd!((1p2 p3
mustfinishtrN(2t0,- .{pl p3 })
={<nornalp> Ip E mustcompleteby(2t 0-l1. pl .p3)1

(assuming mustcomplcteby(2ta-1,{1p3 1)*0)
=(<norma!,p> Ip E (p1 p3)ADeoadline(p) ! 2t0,-1)

(<normal,p> I p E (p3)) (note that' mustcompleteby(2ta-1 ,(pl p3) *6
= {<normal~p3>)

Finally ...

PhaseElect' = SelectPhase({pl,p2.p3 1)
= pickone(musfinishb(DLf-PS,,(pmplist)-PSChCd,.CI {P .p2 .p3 J))))
= pickone(f { normalp3>))
= <normal,p3>

Event 4: t 4 = 0* resume -phase(p3) SI

event parameters:

tevent I- 1 0+

p =p 3

precondition:

(RunningPhase--nullphase)A(Phase(PhaseElect)=p3)
A(Phase(PhascElect) * nullphase)A(MVode(PhaseElect)=normal)

(RunningPhase--nullphase)A(Phase(<norrmal,p3>)=p3)
A(Phase(<normal,p3>) -nullphase)A(Mode(<normalp3>)=normal)

true (so the event is accepted)

postcondbtions:

ResumeTime' (p3 i
RunningPhase'=Phase(Phase~lect)=Phase(<normal,p3>)=p3

C-84 Scheduling Dependent Real-Time Activities

IEvent 5: t5 - ta-4 request-phase(step(O, oe.0) p

event parameters:

tevefli= tS =t'I

v =step(O,oo)
ref ecied =-

p - p3

precondition: true (so the event is accepted)

postconditions:

Totar=-O+Value(p3)(ta,- 1) (since Runningfhase=p3 AFxecMode(p3)=normaf)
= step(v3,2ta- 1)(t.- 1)
= v3

Value'(p3)=step(0,c-)
ExecClock'(p3)=O
AbortClock'(p3)=O
ExecWode'(p3*)norrnal
PhaseList'={pl .p2.p3 }-{p3 }=(pl ,p2) (since texrpected=O)

PhaseElect'=SelectPhase((p1 ,p2 1)
RunningPhase'=nullphase (since p3=RunningPhase)

Evaluating SelectPhase({plp2)) ...

SelectPhase((pl,p2)) =
pickone(mustfl nishby(DLfirst,(PMPlS)st. cheduIt! (pl .p2 I))).

where
pmplist =robescheduled(PChedld(i(Pl p2)))

P'ched~Ijjl'pP
2)) =

PfIiI(.c~ue(P })U(p2)) (since PleastP X Ip, lp2))=)[p 2))

Pf~bPhdId6 (since Pleas&1 ({plM)(1)

- feasibleP 1
1)

(pl),iffeasible(lpl))

feasible((pl I) = true,
iff(Vt)[(t ee~t-- timerequiredby, (mustfinushbv(t. (p1 I)) !5 (t-e~~e,)]

As before, for t y ! re=t 0- I..

Scheduling Dependent Real-Time Activiti es C-85

mustfinishby-(t.{pl 1) =
0, ifmustcompleteb.N(t.{pl

<normalp> Ip E must completebly(t, (p1 I) 1,
otherwise

mustcompleteby(t. Ip 1)
-p Ip [p e (p I}) Deadline(p) 5 t}

-, if t<Deadline(p1I)=2t,,

1p, 1, iftI !Deadline(p 1 }2r 0:

Therefore ..

mustflnishby(t, p I)
=-6 if t2a

{<normna,p> Ip E I{plI otherwise

=-6 if a1

{<normal,p I>), otherwise (t 2t,)

timerequiredby(mustftnishby(t,(p I)))=
= timerequiredby(O), if <a
timerequiredbv((<normal,p I1> I), if t !2,

=-0. if t'z2a
ExecClock(pl)=at-, ift 2ta

Notice that forty~ 1 =-l when t<2t...

timerequiredbv(mustfinishbv(t. (p 1)))-0!5 (rte,,~), as required for feasibility

Anid when t 2t..

timerequiredby(musrfi nishby(t,(plI 1))=t,+15 (1ryen). as required for feasibility

Therefore ...

feasible((p1I))=true .-4 PschdII{Pl 1)=(Pl I

Continuing ...

= Pf il(Pschedute({P')),-up 2)) (as shown above)
= feaible((lJjp)

= Pfeaszbe((p
1p2))

feasible((pl p2 I) = true, iff (V')[Qt !t

-* timerequiredbv(mustfinish:by(t. (ph .p2))) !5

As before, fort t evn .

C-86 Scheduling Dependent Real-Time Activities

mustfinishbv(t. (p1 p2) =

6. if mustcompletebY r. {pl .p2 1=
(<norrnal.p> I p E mustcompletebYit. p1 .p2 }) 1,

otherwise

mustcompleteby(t. (p1 p2))
(P Ip (p E Ip lp2) 1Deadline(p) 5t])

= , if t<Deadline(p I)=Deadline(p2)=2ta,
{p Ip 2 },if I ? Deadline(p I)-Deadline(p2)=21z0

Therefore ...

mustflnishbv(t,{(p Ip2))
= , if t<21a

(<normlp>Ip-j p plp2}} otherwise

= if t<2t a
(<normal~p I>.<normai~p2>} otherwise (t>2t,)

iimerequiredbv(musiishbv(t, (plp2 })) =
= ti .merequi redby(6), if 1<2ta
timerequiredby((<izormalpl >,normal~p2>).,

if t ?2t,

= 0, ift<2'a
Exec-lock~p1l)+ExecClockp2)2ra+ 1, if t 2!21a

Notice that for t=2 1,.

timerequiredby(mustfi nishby(t. (pilp2)I))=2ta+ 1 > ta+ (-en

This violates the requirement for feasibility, therefore..

feasible(I p lp2))-false
~Pft04 s,,,((p Ip 2)) = Pfe,it((Pl 1) (since Ple,,PVp (I p2I)(p2I))

= I(p1I1 (as shown above)
-- PSA~, (jP1 p2 1) = (pl I (since Pscheduild~ (Jp 1 1))fe,,bje,(p .p2)))

Once again, the set of phases that can feasibly be placed in a schedule
based on current knowledge has been determined. Now a single phase must be
selected to execute first..

Scheduling Dependent Real-Time Ati vinies C-87

pmnplist = tobeschedutled(Pc,eleI P1 "P
= tobescheduled({p]
= f<norrnaIpl>)

DL fr,,(PMP"lSt)=DLl,,t((<normal pl1>)
= 2t,

= musrfinishfrv(2ta,{Pl D)
= (<normwlp> PE mustcomplei'eb(2y,(p1

(assuming mustcompleteby(2sa, (p1 D)) ~
= (<normnalp> (P E(fq I [q E (p I)AD eadline(q) -2tj))
= (<normalp> p p 1p (note that mustcompleteby(21,{pl));t)
= (<nornalpl>}

Finally..

PhaseElect' = SelecrPhase(tpl p2 P
=pickone(mustfi rushby (DL,,r,(PinPliSt)-.PchedJIeI (P 1 'P' I))))
=pickone((<normal~p I1>))
=<normal,plI>

Event 6: =ta) resume -phase(p I) S

event parameters:

tevn,= t =(ta10

P =PI

precondition:

(RunningPhase--nullphase)A(Phase(PhaseElect)=pl)
^(Phase(PhaseElect) nullphase)A(Miode(PhaseElect)=normnal)

(Run ni n Phase- nullphase) (Phas e(<norna ,p I >)=pl1)
A(Phase(<normlp I>) ;e nullphase)A(Mode(<norma!.p I >)=normal)

true (so the event is accepted)

postconditions:

ResumeTirne'(pl)=(t0 - I

Runningfhase&=Phase(PhaseElect)=Phase(znorma,p 1>)=plI

Event 7: t7 2ta request-phase(step(O, -c), 0) p1

event parameters:

C-88 Scheduling Dependent Real-Time Activities

tceven t t7 = 21a

v = step 0-,)

texpected = 0

p =pl

precondition: true (so the event is accepted)

postconditions:

Total'---v3+Value(p 1)(2ta) (since RunningPhase=p 1 ,Execode(p 1)=normal)
= v3+step(v 12ta)(2ta)
= v3+vl

Value'(p l)=step(Oo)
ExecClock'(p)=O
AbortClock'(pl)=O
ExecM ode'(p 1)=normal
PhaseList'={pl.p2)-{p 1 ={p2) (since texpectl=O)
PhaseElect'=SelectPhase([p2))
Runni ngPhase'=nu lphase (since p1 =RunningPhase)

Therefore, the history is accepted by the DASAAN-D automaton and has a total value of Total'vl+v3.

LBESA Automaton Does Not Accept History H. The first two events are accepted in the same way as

they were for DASA/N-D. Also, all of the state components, with the possible exception of "PhaseElect," are

the same for both automata after the first two events. After that, LBESA behaves differently than DASA,-AD.

The following development shows the behavior of LBESA in detail. (Refer to Section 4.3.2.1 for the

definition of the LBESA automaton.)

According to the automaton definition, initially:

Total=O
RunningPhase=nullphase
PhaseElect=<normal.nullphase>
PhaseList=

The folowing labeled steps demonstrate the acceptance of the first few events in history 1t, and detail the

changes in state component values that accompany each event.

Event 1: t i = 0.. request-phase(step(vl, 2 ta), ta'4l) p1

event parameters:

'evet t I = 0-

v = stemv 1pi
2
1a)

t xpected = ta+1

p =pl

precondition: true (so the event is accepted)

postconditions:

Scheduling Dependent Real-Time Activities C-89

Value'(p 1)=sep(v1,~2t,)

ExecClock'(p 1)t, I
AbortClock'(p1)=O
L£recMode'(p I)normalI
PhaseList'=O_;4pI }={pI I since r?'Oced)
PhaseElect'=SeleciPhase((p 1))

Event 2: t, 0- request-phase(stepo,2, 2 c,), tail p

event parameters

reven =f =0

v = step(v2.21a)

p - p2

precondition: true (so the event is accepted)

postconditions:
Value'(p2)=step(v2.2t,)
ExecClock'(p2)=t,
AbortClock'(p2*)=
ExecMode (p2)=norrnal
PhaseList'=[pl })..p2)={plp 2) (since texpecfed >0)

PhaseElect'=SelecrPhase((p1 .p2

Event 3: t3 =0 request-phase(step(v3, 2t.- 1). tt- 1) p3

event parameters:

v = st ep(v3,.r- 1)
texpecied =-1

p =p 3

precondition: true (so the event is accepted)

postconditions:

Value'(p3)-step(v3 It,-I)
ExecClock'(p3)=a- 1
AbortClock'(p3)=0
ExecMode'(p3)=normal
PhaseList'=(pl ,p2 l)p3)={pl~p2 p3 1 (since 'xel'0
PhaseElecz'=SelectPhase((pl ,p2 ,t'3))

Evaluating SelectPhase((plp2,p3 1) ...

C-90 Scheduling Dependent Real-Time Activities

SeleclPhase((p1 ,p2 .p3 1)
pickone(mustinishbY(DL fis$~pmplist).schejut~d {p1 ,P' P3 1))),

where
pmplist =zobescheduled(Psch~ded((P1 p2 ,p3)))

PSCh~dt~e ([pl ,p2,p 3 1) =
Pf.,l(ceue(Pl p31]) ' p2 () (since PlkZMDL((p ipp })={p2 1)

PSChediWed(pl'p
3 1)=

Pf'aflb1(PSChI~l4({Jp
3 I)u (plI (since PIO=IDL(p

1 p3)={pl })

PScheduJI(P
3))
= Pfesib(P sch dled X.) Ip 3} (since PlasIDL([Pl I)=PMI

= (p3 1. iffeasible((p3 1)

feasible((p3)) = true,

Fort tvel ..I

mustfinishby(t. (p73))
0, if mustcompleteby(t. (p3))=iO

('znormnal,p> I pE rmusrcompleteby(t. (p3 1)),
otherwise

inuszcomp/eteby(t. (p3)
= (p I [p E (p3)AD eadline(p) 5t])

= 6~, if t<Deadline(p3)=2ta-'

(p3 1. ift 2:Deadline(p3)=2'- 1

Therefore..

mustfinishby(t. (p3 1)
6, iftrcr2t-1

I(<normnal p> Ip e (p3)1I otherwise

6, iff<2t -1

(<nortnal~p3>). otherwise (t t2'a- 1)

timerequiredby(musifinishby(t,{p3)))=
= zmerequiredby(O). if t<2ta-1

timerequiredby(I<normna lp3>)) ift t> 2t,-l

=0, ifu<2t - I

ExecClock(p3 =ta l if t 2t,- I

Notice that for t tte~,e,=O, w hen t <2ts- I..

timerequiredby,(mustfinishbv(t, (p3)-O <' (-tee,)' as required for feasibility

And whent 2!2t,- 1..

Scheduling Dependent Real-Time Activities C-91

timerequiredby-(mustfinishbYv(Zfp3))= 0-i 2t, -I S (r-t vnd
as required for feasibility

Therefore

feasible(J p3)*true -4 P,,hed,.eje (p3))=p3

Continuing..

Psched~dei [pp3))

f.bepc~idj3) I (as shown above)

= Pfeaszbe({P3II p3))

feasible(jpl .p3 1) =true. iff (Vt)[(t ' seven')

-- timereqluiredby(mustlinishby(t. ipl p3 1)) 5 -,,)

For t - ee .

mustfinishby(t.{pl~p3))
6.if musicompleteby(t, fpl p3)I)=4,

(<normal~p> Ip E mustcompleteby(t, (pl ,p3) 1.
otherwise

mustcompleteby(t. Ipl ,p3 1)
Ip [I [p EI lp.3),sDeadline(p) t])

= . if i<D eadline~p3)=21a -1

Ip31. if Deadline(p3)=2t,-I -5t
<Deadline(p I)=2ta

fpl~p3), ift t Deadline(pI)-2 ra

Therefore..

mustfinishby(t, (p1 p3))

(<normalp>IpG E{pp 3) if2ta!1t2t

=0, if:t.21 -I

{<normal,pl >.<normalp 3>1 if 2ta!5t

uimerequiredbyv(mustfinishby(t. 1pl1p3)) =

h .merequiredby(), ift<.21"-1

timerequiredby((<normalp 3> 1), if 2t -1 !e'z2t
rzmerequiredby((<normalplI>,<normal.p3> 1),

if 2ta ;r

=0. if :4ta-1
ExecClockp3)Ia- 1, f2taO~1 t<21a

ExecClocki(pl)+ExecClockip3)=2ta. if 2ta St

C-92 Scheduling Dependent Real-Time Activaies

Notice that for t 2! teO when t < 2 t,, I..

limerequired'-(mustfinishby(t. {pl .p3 I))=-O < (t-teer*), as required for feasibility

When 2t,- 15t< 2 t ..

:imerequiredby.(mnus~finishby(t.{p1.p3))t_-1 !52t,-~l (t-r even:)'
as required for feasibility

And when t 2ta ..

rimnerequiredbv~nustfinishby(t. {p lp3 1))=2t,
as required for feasibility

Therefore..

feasible({pl .p3 I)=t rue
~~ })={p lp3)

-*sedIe{p1 ~p3)={p1 .pJ 1

Continuing ...

Pschedse4"p
1p2p 3))

= Pf iI(P cA ed Wtd([p1 p 3).(p 2)) (as showni above)

= Pfibe hlp 1p 3),- (p2))
= Pfeasbl({p 1p 2 ,p3 1)

To evaluate PfeSzbj,le(IP 1 ' 2) ..

feasible([p1 p2.p3) = true. iff('Vt)[(t !1,e,
-* timerequired by(musrflnishbv(r. p1 .p2,p3))) !5 -red

For' 't

mustfinishby(t{(p Ip2.p3 1)
0,ifmrustcornpleteb'.(t. Ipl p2.p3 I)0

(<normal~p> I pE mustcomplezeby(t. [p1.p2.p3)))1.
otherwise

mustcompleteby(t p l p2,p3 1)
[p I [pE e plp2,p3 I ADeadline(p) tI)

= ~, if t<Deadlinep3)=2tz0 -l

[p3 I, if Deadline(p3)=2t a-1 !St

(pl~2,p3<Deadline~j,
)=2ta

(p1 p2,p I.iff' Deadline(pl 1 t'

Toierefore .

Scheduling Dependent Real-Time Activities C-93

mustfinisliby(t. (pl p2,p3)
0,a if t<2ta I
<normalp> Ipe {zp3 i -1t2I ! t <2t,
{<norrnalp> Ip E Ip lp2.p3). if 2t,,- t

= . if t<2t,,-
I{<normalp3>). if 2'a- 1 St < 2

1 wrmalpl>.<normalp2>,<normalp3> }.
if 2t! t

timerequi redbv(rnustfinishby(t. (p1,p2.p3 1)) =
t imerequiredbY(6), if I)t,,-2 I1

timnerequiredbv(i { normalp3>), if 2ta- 1 <1
£imerequiredb-,(knormaIp 1 >.<normal,p2>,<normaIp3>

if 21a t

=0, if t'2ta- I

ExecClock(p3*,,r- 1. if 2ra 1_ <t
Exec,-l-ock(p I)+E-xecClock(p2)+Exec-Clock~p3)=3t,,

if 2ta:5t

Notice that for t=210 ...

timerequiredby(mustflnishbv(t, (p1 lp2p3 1))=3t,, > t=-evn

This violates the requirement for feasibility, therefore..

feasible((p1 lp2,p3 I)=false
P ~fe.ubte((p 1 lp 2.p3 I)=fea±,Lh.(p1 lp2 1) (since P,.,, (p l p2,p3 I)={p3 I

To evaluate Pfeasibtefplp 21)).

feasible(fpl~p2)) = true, iff (Vi)[(i 2! 1,d
-- :imerequiredbv.(musfinishb'dt. (p1p 2 })) (t-teve,)]

Fort te n

rnustfinishbv(t. Ip1 .p2 1)=
61 if musi'complercbN,(r, (p1.p 2 J=
(<normnal,p> (p E rnustcompleteby(r. (p1 ,p2 I) I.

otherwise

musicomnpletebyt,{(p l p2))
=p Ip [pe r=plp2)ADeadline(p) 5 tj)

0.~ if i<Deodline(p I)=Deadline(p2)=2t 0 ,
(p1 42), if Deadline(pl1)--Deadline(p2)=2a

Therefore..

C-94 Scheduling Dependent Real-Time Activ,.jes

musrfinishbv(t.)pl .p2))
0,o if t<2t,

I <nornalp> Ip E (plp))1 , otherwise

=0. if t<2't,
<normal~,p I >,<normalp2> }, otherwise (t > 2t,,

timerequiredbv(musrfinishbv(t, Ip Ip2 1))=
= i merequiredby(O), i <t
timerequiredby(f <.normal,p I>,<normal~p2> 1),

if t 2 2

= 0. if t2ta
Execlock(v 1)+Execlock(p2)=2r ,+ 1, if t 2,

No~ce that for ta ...

timerequiredby(mustfinishb&., (pil.p2 1))=2t,+ 1 > t=ttv)

This violates the requirement for feasibility, therefore..

feasible(f (p1 p2))=false
--I P whe (p1I p2))= fe I((p1)1) (since Ple..,rPV)(1 p2))=)p 2))

To evaluate Pf.esb.((P1))..

feasible(fp 11) = true,

For t > een .

musiflnishby(t.{p I.)
0. if mustcompletebv(t, (pl))=o
I <norrnalp> I p E mustcornpletebv(t. (p I1))).

otherwise

music ompleteb v(z. (p I
(p)I [pE (p1)ADeadline(p)Stj j

=0. ift<Deadline(vl)=2Ia
(p, iftr Deadline(pl)=2t0,

Therefore ...

Scheduling Dependent Real- Time Activities C-95

mustfinishbY(1.{p1 .
=0.a

(<normal~p> Ip E I p Il, otherwise

=0, if 1<2rIt

(<normalp I1>), otherwise (t 2:)

timerequiredb>N (mnusjzinishb -y(t (pl 11))=
= tmerequiredbY(o). ft<t

timerequiredby({ <norma l~p 1> 1), if t > 2ta

= 0, aft2,
ExecClock~p 1)=ta, 1, if! t 2ta

Notice that for t~et =O when t <2ta,.

uimerequiredbyl(mustfinishbyi(t~lpl))05 (!-tee,)' as required for feasibility

And when f 2t,.a

timerequiredby(mus/finishby(t. (p], }))=t + 15 2t/a ttn)
as required for feasibility

Therefore..

feasible((pl I))=true -+ freasibleO P1 I)= (P1

Putting this together ...

Pscheduj&I{pi .,p2.p3 1) = PfeasihIe(1 ' 2p)

= feo.be({p p
1 J)

(since feasible(ip l.p 2.p3 I)=falseAPj,,,rpj((p]. p2.p3)I)=(p3))

= Pfe.jhI(p1 D) (since feasible([lpi I)=faIse/\P leastl p {pP 2)) ()p2 1,,

= (p,) (as shown above)

At this point, the set of pha-ses that can be feasibly executed has been
dctermu,-. Now to decide which phase to be executed first..

pmplist = tobescheduled(Ps.),,sleI (pl p2.p 3)))
tobesrheduled(ipl I
I {<norn142pl >)

DlLf,'rmplist) = DLfr~~om~.l1

mnustfinishbv(DLfi,5I,(pmplist),Pch.duea4 p'.p2 ,p3)))
=musrfinishby(2t0 1 p 11)

= <normalp> Ip E must completeby(2tai pl I)

(assuming mustrompleieby(2ta,(pI 1)*0~)
= {<normal~p> 1pe Iq I[qE f p1 }ADeadhine(q)! 2/a] H

=(-znormalp> Ip E Ip I1 (note thaf musicompleteby(2ta. (p, D)) 6)

=(<norrmal~pl>l

C -96 Scheduling Dependent Real-Time Activities

Finally

PhaseElect' =SelectPhasc(I{p l p2,p3 I)
= pi ckon e(mustfi nishbly(D Lr~,tpmplist),,hid (p Lpated 2Pp PP 3 }

= pi ckon e(k<norma lp I1> I)
= <normnal~pl>

Event 4: t4 = 0' resuxne-phase(p3) S

event parameters:

tvn= 4 =-0

p =p 3

precondi don:

(RunningPhase--nullphase)A(Phase(PhaseElect)=p3)
A(Phase(PhaseElect) # nullphase)A(Mode(PhaseElect)=norna!)

(Runni ngP hase--nullphase)A(Phase(<norrnal~p I >)=p3)
A(Phase(<normal,p 1 >) nul~phase)A(Mode(c<iormal.p I >)=normal)

false, (since Phase('cnormalpvi> =pl ;t p3)

Since the precondition is not satisfied, the event cannot be accepted.

Therefore, history 1 , is not accepted by the LBESA automaton.

LEESA cannot accept any history that begins with Events (1)-(3) and that has only those three phases,

with the already specified time-value functions and computation time requirements, that will yield a total

value greater than vi1.

This proof will be carried out by identifying all of the histories that LBE-SA can accept under these

circumstances. The total value resulting from each of these histories will then be examined to demonstrate

that none is greater than v1.

To begin to idcnify the histories that are accepted by LBESA, notice that. given Events I , -(3). LBESA will

behave exactly as described in the preceding section. After accepting Event (3). the third event in this

sequenk.e. the only events whose preconditions are satisfied are:
1. any *request-ph3se'

2. 'resume -phase (pl1)'

Examine the first possibility - any 'request-phase' event - more closely. Let p, denote the phase

originating a 'request phase' event. If p, i (pl. p2. p3 1, then p, is a new phase. But this violates the

Scheduling Dependent Real-Time Activities C-97

assertion that the only histories being considered consist solely of events associated with phases pl. p2, and

p3. Therefore. p,, must be a member of (p I, p2, p3).

Also, notice that after accepting Events (04-3), RunnhngPhase=nullphase. which is not a member of (p1,

p2, p3). Consequently, the postconditions of a 'request-phasev,, t.,) p,,' e-ent are:

Value'(,)=v1,
ExecClock'(p,,)=t,
AbortClock'(p~)=0
ExecMode'(px)=normal

PhaseList'=PaseLisxp) or PhaseList-{(p,
P has eElect'=Se lectPhasc(PhaseList()

Notice that these postconditions serve only to alter or reiterate the scheduling parameters of the already

defined phases (possibly removing one of the phases from consideration from scheduling at the same time

and potentially selcting a new PhaseElect to reflect these changes,. If the scheduling parameters are

altered, this violates the assertion that the automaton will consider only the time-value functions and

expected computation times alr-eady specified for the three phases by the first three events. Consequently,

the only 'request-phase' events that LBESA can accept at this point reiterate the scheduling parameters for

p, E pl, .2, p3). (Hereafter, 'request-phase' events that serve to reiterate previously defined scheduling
parameters may be referred to as reiterative 'request-phase' events.) Furthermore, notice that although

such 'request-phase' events do not alter the scheduling parameters for a phase - they merely reiterate

them - there is a potential effect of these events on the automaton state component Pha.seElect, which is

set equal to Select fhase(Phas-List") as a postcondition of each 'request-phase' event. The function

SelectPhase() is dependent on t, which increases during the course of any hiustory.

To examine the effect of a 'request-phase' on PhaseElect consider first the effect on the value of

Pschedle((P 1 'p2 ,p 3 1) as a function of leei Of course, t,,, > 0 since onh' legal] histories are under
consideration here, and the third event occurred at time t, = 0, With that in mind, expand the value of

Pschedul1ed({ 1 P 2 'p3 1) as follows:

Psheduldf (p lp2.p3) = P I e,,,hePh,((P/] pipP1),.4p 2)) (sirce Pj ias.DL((pl P2,r 3 })={p2j)

= f-ashe PfeashI/e .eI {',d(3)().p I I)_ (p2 (since "',ssrL)L (pl'p 3j)=p 1 ;)

= PfeahIe(Pfasible(Pf'tsh(O {P 3 J),j(pl I K.,p2

= fehe(feshefehe(p3j)),_(pI 1Lkp2 1

Pfeasible jp3)=
jp3). iffeasible((p3(),
6, otherwi se

Sever-al feasibility conditions like this will have to be evaluated in the following section of the proof.

Therefore, a general result will be derived here that can be applied to any of the simple cases that follow.

Consider a phase p with automaton state components:

C-98 Scheduling Dependent Real-Time Activities

Value(p) = step(v.tDL)
ExecClock(p) = trequred
AbortClockp) 0
ExecMode(p) = normal

Notice that pl, p2, and p3 all satisfy this profile at this point in the automaton s examination of any

history that it accepts. Then ...

feasible((p)) = true, iff (Vt)[(t > t ent) -) timerequiredby(mustfinishby(t, fp)) < (t-t e,)

For teven t > t ...

timerequiredbv(mustfinishby(t, (p 1))
= timerequiredbv(o), ifmustcompleteby(t.{p })--

rimerequiredby({ <normal,q> Iq qE mustcompletebN (t, (p)), otherwise

mustcompleteby(t,{p})' = { q I [q E (p} ̂ Deadline(q)<] }

= O, ift<tDL

(p1. ift 2!tDL

Therefore,

timerequiredby(mustfnishby(t.p}))
= timerequiredby(o), if t<DL

timerequiredby(j <normalp>), if t > DL

= 0. if t<tDL

trequired, if t _ (DL

If feasible((p}) = true, then, by definition, for any t 2! t,e, ...

timerequiredby(musfinishby(t,(p 1)) !5 (t-tevet)

For the cases where t < tDL, this relation is trivially satisfied since the left-hand side of the relation is

equal to zero and the right-hand side is greater than or equal to zero by definition

(t te,ent - (t- teven,) > 0). For the cases where t 2! tDL

trequired - t-tevent

-' revent - trequired - tDL-required (since t > tD

Applying this general result to each of the three phases under consideration yields:

efeasible({pl}) true, iff tevent 5 2ta--{t+I) = ta-I

ofeasible((p2}) = true, iffte~,e !5 < t ,:,

Ufeasitble(npt) = t e, fftevut d (2 es-1so fto-) = t)

Using this information in the previously derived expression for 1 ,,, ,ble({p3 1) yields ...

Scheduling~ Dependent Real-Time Activities C-99

ieo~he p3 1) , iffeasible({p3 1)

01 otherwise

0. if ta n

Pscheduled~l { p2 p3))
- Pf ,I(Pf s~~ ([-, p IKp2).f !tevefl! ta

- feas~bIe pfeasihie((P).'{p kp2, if t < t

=Pfe,, (Pej(fpI) p2)). if0 rvn 5 t

PfeaSzb~e(PfaSbbk(IPl)),- (p 2 1), if ta <1,en

For t,< .

PSCheduIed{p
1 ~p2 ,P

3 })
= if.b~~f ,eI)) P2))

= feasibte(6-" IP2 D) (since feasible(I p1 I))=false for ta,<Ueen,)
=Pfe~jbte({p2)

= 0 (since feasible(I p2))=false for to<teht)

Consider the other case in the derivation of PhMe(p lp2,p3), where 0 5 te,, t, .

C-ioo Scheduling Dependent Real- Time Acti vities

PTwhded(!(P I p2 p3 1)

= feajid(pfeaui hie((pI P3 1) -I(p2))

=Pfeg 5 1,h((p p 3)j I {p2}). if te~n (since P~eashle('IP1.0p3=jplp
3 j)

1-1i~fesbe(1)k jp2 IifO0< leen, 5ta
(since PfeasIbie([l 1)=P .,esihbie((P1 D})

= Pfew~bI,(Plp2,p3). ftvn=

(since feasible(J p1 1)=t rue lf ee S t.-')

P~easble~ _) p2)) if a - eent! ta

Pf-,,,([2)).if t -1 <t <t '

Pf-,bI,(IPUD' ifO t < te e,5[-1

Pf~ hj, jp2 1).if . - < I ,W : ta(since P feassbhe, (p l)P J feasi1e((P1 1)

= (p11 if [.,=O (as shoK n previously)

IPh. jfOeye,,j ! a,-1I

(since feasible((p1 I))=true iffY , ,!ta-~l)

(since feasi ble(i p2 1)=rrue iff t .. nt1)

Putting it all together..

(p 11. -f05lee, 1

o. if ' <tI e

Remember that. by definition:

SelectPhase([pl p2,p3 1) =
pickone(musrflnishb)(DLfP's,(pmpliSt)P,,he,,I 'p I.p2.p3

where
ptrplist =tobescheduled(P,,h~d.U,dI pL Ip2,p3 1))

As a consequcnce of these last two points:

SelectPhase((ph lp 2 .p3 I)=
<norm~aI~pls' if 0!5te,enita-I

<nornalp2>, ift I,-'1t~n!t

The outcome of this portion of the analysis is that any number of 'request -pha-se' events can occur to

Scheduling Dependent Real-Time Activities C-101

reiterate scheduling parameters of the three phases of concern. These events will be accepted by the LBESA

automaton and the PhaseElect state component will have its value changed as indicated above for

PhaseElect = SelectPhase(pl,p2,p3). The (possibly empty) sequence of scheduling parameter

reiterations may be broken by a 'resume-phase' event for phase PhaseElect at any time.

For reasons similar to those offered earlier, this 'resume-phase' event may be followed by any number of

other 'request-phase' events for the two phases that are not executing. Once again, these 'request-phase'

events may change the value of the PhaseElect phase component. In fact, the first 'request-phase' event

occurring after the 'resume-phase' may cause a change in value in PhaseElect, thus potentially triggering a

preemption.

Since it is difficult to follow a narrative description of all of the potential histories that may be accepted

by LBESA, the following approach is taken. Consider the diagram below, where each labeled item is an

event. "E'" indicates one or more occurrances of the expression "E", and "E indicates zero or more

occurances of the expression "E". (The labels "(Case X)" are merely used in the ensuing discussion to refer

to specific branches of the diagram.)
El

E,

[Er ,trat]
E4

(Case I) (Case II)
[Erlcratel] E5

E6 [Er.,tvratel °

[Er i,i.2,LE7
[E,tratc]"

(Case III) (Case IW)
[E,ae E8

E 9 [Etrratc]

where

C-102 Scheduling Dependent Real-Time Activities

EI: tI = 0-" request-phase(step(vl, 2 ta), ta+l) p1

E2: t2 = 0" request-phase(step(v2, 2 ta). ta) p2

E3: t3 = 0 request-phase(step(v3. 2ta- I), ta-1) p3
E4: t4 resume-phase(Pfirst) S
E5 : t5 request-phase(step(0, -), 0) rim

E6: t6 preempt-phase(p f t) S
E7: t7 resume-phase(pseCOnd) S

E8 : t8 request-phase(step(0, -), 0) Psecond

E9 : t9 preempt-phase(p,,,o d) S
Ereterate: 'request-phase' reiterating scheduling parameters for

a phase other than RunningPhase

To interpret the above diagram, each history accepted by LBESA begins with the first event. E1, which is

on the first line of the diagram. To trace an individual history accepted by LBE.SA, begin with the top line

and proceed down one line at a time. Where there are branches, choose one path or the other and continue

to move down through the diagram. The history may be terminated at any time 30

To demonstrate that the diagram is correct, that is. that it incorporates all of the legal histories that LBESA

will accept, consider the following rationale.

As was discussed earlier, a 'request-phase' event may be accepted at any time, as long as it serves only to

reiterate the already established scheduling parameters for a phase. As a result, the diagram indicates that

such events, labeled [Errterate]", may occur between any other two events in a history.

As was also shown earlier, an examination of the preconditions of the various potential events indicates

that the only event that may be accepted after E,, E_, E3 , and any other reiterative 'request-phase' events is

a 'resume-phase' event to start the execution of the phase that is currendy designated PhaseElect (as long

as PhaseElect is not the nullphase). Hence, E4 can only be a 'resume-phase' event.

There are two possible courses that may be followed after E4 : (a) the phase may be preempted (Case I) or

(b) it may complete execution (Case II). In the latter case, if the phase runs to completion, then it will

originate a 'request-phase' event to signal that circumstance. This event will always be accepted because

its precondition is simply true. In Case I, examination of the precondition for a 'preempt-phase' event

indicates that a preemption can only occur if RunningPhase is not the same as PhaseElect and is not the

nullphase. The postconditions of event E4 guarantee that RunningPhase is not the nullphase. Hence, if a
'request-phase' event following E4 yielded a value of PhaseElect different from RunningPhase, then,

according to the previous analysis of SelectPhase({pl ,p2,p3 1), the only possibilities are:

1. E4 resumed pl, and PhaseElect subsequently becomes either p2 or nullphase, or

2. E4 resumed p2, and PhaseElect subsequently becomes the nullphase

Currently, the assumption is made that the required computation time for a phase 1 known exacdy.

Whenever the phase designated by PhaseElect is resumed immediately after a 'request-phase' event, it will

30At any time after the third event- that is. By definition, the ony histoncs being considered are those that begin with errnts E. E-.

and El in that order.

Scheduling Dependent Real-Time Activities C-103

be able to meet its deadline if it runs uninterrupted because a test of feasibilt., was carried out that verified
exactly that fact. However. if time is allowed to elapse between the 'request-phase' and the 'resume-phase'

events. it is possible that it is no longer feasible to execute PhaseElect by the time it is actually irutiated 31 .

Subsequent 'request-phase' events serve to indicate that fact by selecting a PhaseElect other than
RunningPhase. thereby setting the stage for a preemption.

Consider the next non-'request-phase' event to be accepted by LBESA under Case II in the diagram. If the
first phase to execute, Pf-,t' completes execution, it signals this fact by originating event E5. Then the
subsequent evaluation of either PhaseElecr=SelectPhase({p2,p3 1) (in the case where Pfrst was p1) or
PhaseElect=-SelectPhase({plp3 }) (in the case where pfut was p2) yields

PhaseElect = <normal, nullphase>. Therefore, no subsequent 'resume-phase' event can be accepted by the

automaton since the necessary precondition cannot be satisfied. Also, since RunningPhase = nuliphase
following E5 , no new 'preempt-phase' event can be accepted either. So. except for reiterative 'request-

phase' events, no further events can be accepted in these particular histories.

In Case I. where the first phase to execute was preempted, this fact was indicated by event E6 ' As one of
its postcondiuons, E6 set RunningPhase = nullphase. The next event in any history accepted by LBESA,

other than reiterative 'request-phase' events, cannot be another 'preempt-phase' event because that would
require RunningPhase* nullphase. Therefore, if any event other than a reiterative 'request-phase' event is

to be accepted by LBESA, it must be a 'resume-phase'. In order to have such an event occur, PhaseElect
must, as a precondition, be non-nullphase. This can result from a reiterative 'request-phase' event

according to an analysis similar to the one done above.

Finally, if E7, a 'resume-phase' event, is accepted in a history, then the situation and analysis is almost
identica to the one that was examined after event E., the previous 'resume-phase'. Once again, the
resumed phase, Pecod in this case, can either be preempted (Case III) or run to completion (Case IV), and
the circumstances for each of these outcomes is exactly analogous to those given earlier for E4. However,
the earlier examination of SelectPhase({plp2,p3?) shows 'hat there is no possible successor phase to

execute following either E8 or E9. In both cases, this is due to the fact that p,, 0ond must be p2 and
PhaseElect = SelectPhase((pl ,p2,p3 1) and PhaseFl,,r - SelectPhase(Ipl p 3}) both yield

PhaseElect = <normal,nullphase>, which will not permit a subsequent 'resume-phase' event to be accepted

by LBESA.

While the above arguments demonstrate that the earlier diagram incorporates all of the legal histories that
may be accepted by LBESA, they do not reveal all of the factors involved in making the histories acceptable.
In particular, there are constraints on the times at which certain events occur, above and beyond those that

apply to any legal history, that must be satisfied to obtain certain histories. For instance, depending on the

3 1.ntuitively, this can be thought of as reflecting a latency issue. In effect. the scheduler determines whai can be feasibly completed
in the available time from the instant at which a scheduling decision is made. However, if the latency encountered in actually
dispatching the next phase is large enough, then, by the time it has dispatched the phase, the set of phases that is feasible has changed.
Notice that it is possible to specif , this latency and apply certain restrictions to histories in order to model and accommodate the
latency. Also, it is possible to alter the algorithm embedded in the automaton to handle this latency when it is dctermnming Pha.seElect.

C-i04 Scheduling Dependent Real-Time Activities

timing of events, there is the possibility of executing zero, one. or two phases dunng the course of a history.

The following list specifies the time constraints that must be satisfied by various events to obtain given

histories:
1. if the history includes event E., then Pfirst may be either pI or p2 if it is to be pl, then t,,,,

for the 'request-phase' immediately preceding E4 must satisfy:

0 < teven t !5 ta-a

if p, t is to be p2 , then rer for the 'request-phase' immediately preceding E. must satisfy:
t- < tt <t

2. if the history includes event E6 (Case I), then either:
a. Pf-,t = pl - in this case, t4, the time at event which E4 occurred, must have sansfied:

t,-1 < t4

b. P rt = p2 - in this case, t4. , the time at event which E4 occurred, must have satisfied:

'a < t4

3. if the history includes event E, (Case II). then either 32 :
a. Prit = pI - in this case, t5, the time at event which E5 occurs, must satisfy:

t5 = t4 + (ta+-1)

since required computation time is known accurately.

b. Pf-,t = p2 - in this case. t5, the time at event which E5 occurs, must satisfy:

t5 : t4 -t,

since required computation time is known accurately.

4. if the history includes event E7, then Pfrt must be pl and Pcond must be p2. In addition,

tne,, for the request-phase' immediately preceding E7 must satisfy:
ta-1 <rt t <t a
a, I event a1

5. if the history includes event E8 (Case IV). then t., the time at event which E8 occurs, must

satisfy3 3:

t8 = t7 + ta

since required computation time is known accurately.

6. if the history includes event E9 (Case III), then., since Pfrs = p2, t7 , the time at event v.hich E-
occurred, must have satisfied:

ta < t7

Once all of the histories that are accepted by LBESA have been enumerated, their respective values can

also be enumerated. To that end, the table shown in Figure 4-7 puts all of the preceding pieces of the

argument together. It lists all of the histories accepted by LBESA that start with events E , E.., and E3 , along

with their corresponding values.

,his is actually a requirement of any legal istory. It is explicitly listed here since it does point out an inportant time constraint

for the history that otherwise might be forgotten.

33Once again, this is actually a requtrement of any legal history and is orsy included here for the sake of compcteness.

' 4T17he value at this point wil be: ta vl, if p t= p andt, 5 t,-l.(b) v . if = p. and t., .r c;(, n.nailitherca%,es.

ttSarre conditions as in the previous cas determine the actual value.

6T'1it value at this point will be: 'a) v,- if t, 5 t., or (b) 0, otherwise.

3"Sanc conditions as in the previous case determine the actual value.

Scheduling Dependent Real-Time Activities C-105

Historn Value
E1 E

I' E: E3 0

E1 EE 3 rEcitrai] E4

E, l E3 [Eritrac] *E4[Erteratc] 0

E E 3 '[mtrt-*E-~etrtl- 0, v 1. or v2 34

E1 E, E3 *E 0, v I, or v2

I EI E E 3 *[Ei] rtclE'hrciteratI] [ri*E 0

E 1 E_[[Etitrra]cl'[Erit*e 6[E~~r

El .E,E 3 [E~jtrae] E4 [Erirai]tcl a JErra at 0

E1 E~3 *E ~ E4 (rat]E rcicraeVE6[~eir - Eer 0

E I E,- E3 , [EreiteratI*, E44Ereicracl %Ere ieraeI"E6 [Ereitratclo'E7 Eeiear~ 0rv 3

E1 E, E3]-m E4Eeirl ~r~eacI [Ertiteratcr]E FEreiraeiE* 0 2
I 3' [E itra 4i r ei rt I* r ieae 6

E 1'E, E3 [(EM re I*E4'1Emteraie I Erritr rae IE6'[EeitcrafE [Ererirc-E 0rv3

1 ,E2'E 3 .Et] t*E 4 [ErelIte f [ErctiratiVEt) [EieaeFE-I [Erciterael E 0r%2

E1 E, E3 4
[E If rale E4 4[EM~ ir

1 ' fiEreiraieVE6 EE-ritcat]*'E Trtcratif] 0

Te' Eaiu total vale f rany istory 0cetdb BS sm~0v.2.Snev n 2aebt
greatr tha zero thisis eqal tomaxrvit2).Atls, frmtheitral val e dnitcr eatosi s nwnta

-[Er 1 > v2/t

,iterefore.rtel

C-106 Scheduling Dependent Real-Time Activities

vl.ta > v2.(ta+1) (note that ta>O)

v2-(ta+l) = v2.t a + v2 > v2-t, (since v2>0)

vlita > v2-(ta+l) > v2.ta

vi >v2

Consequently, the maximum total value for any of the histories in the table is max(vl,v2) = vl.

As shown in the first section of this proof, DASA/IN accepts a history with value (vl--v3) starting with

these three events, while the maximum value for a history accepted by LBESA is vi. Therefore, there exists

a case in which DASAA'D accepts a history with greater value than LBESA, and there is no transformation of

that history or alternate history dealing with the same phases and scheduling parameters that allows LBESA

to obtain an equal or greater value than DASA/ND.

EndOflroof

Since the DASAATD Scheduling Automaton is equivalent to the DASA Scheduling Automaton when there

are no dependency considerations, the result extends to the DASA Scheduling Automaton as well.

4.3.3. Algorithm Tractability

This section examines the computational complexity of the DASA scheduling algorithm. Specifically. the

amount of time and space required for the DASA algorithm to select a phase to execute is derived. Of

course, the lower the complexity of a computation, the more feasible it is perform. In general, problems

that have exponential complexity are deemed intractable, while those that have a low polynomial

complexity are considered tractable.

4.3.3.1. Procedural Version of DASA

It is possible to use the definition of the 'SelectPhaseo' function presented in Section 3.2.1.3 to

investigate the computational complexity of the algorithm. However, it seems to be somewhat easier to

analyze a procedural definition of the function.

Figure 4-8 shows a procedural definition of the DASA scheduling algorithm.

Where possible, the variable names in the procedural definition are taken from the corresponding state

components in the DAS. Scheduling Automaton.

The language employed for the definition is similar to Algol or Pascal. The control statements

(if-then-else. for, and while) may delimit blocks of code and are explicitly terminated (with endif, endfor,

and endwhile, respectively) to avoid any ambiguity. The for statement is used to step through an ordered

list, one entry at a time. The variables in the for statement take on the values dictated by the current

element in the list. The exitfor statement causes control to pass to the statement following the innermostfor

loop enclosing the exit/or statement.

Scheduling Dependent Real-Time Activities C-107

SelectPhaseProc(PhaseList)
:variable declarations

schedule Sched. TentSched
real TotalTime, TotalValue. Currentleadline. DL
phase P, NextP. PnorP, Current.Phase
orde.ed List of phase PhaseL-ist. SortedList 6
mode SchedMode, Mode

.create an initially empty- schedule
Sched = emptyschedule

construct the dependencyv list and determine PV D for each phase I1I
for P in PhaseList

if ExecMode(P) =normal) then
TotalTime =ExecClock(P)

Tota] Value =Val(P)

DependencyList(P) = emptylist 16
NextP = Owner(ResourceRequested(P))
SchedLMode = normal
:follow chain of dependencies
while ((NextP * nallphase) A (Sched.Mode * abort))

if (ExecClock(NextP?) !5 AbnrtClock(NextP)) then 21
;update dependency' list and adjust accumulated value and time

DependcncvList(P) = DependencvListv complete, NextR>
TotalTime =TotalTime + ExecClock(NextP)
Total Value Total Value + Val(,NextP)

else 26
DependencNvLisc(P) = Dependencyvist <abort. NextR'>
TotalTime =Totalfimre + AbortClock(NextlP)
;nore: 'Total'alue' remains unchanged

Sched.Mode = abort
endif 31
:advance to next phase in dependency list

NextP = Owner(ResourceRecluested(.NeXtP))
endwhile
PotentialValueDensirv(P) = TotalValue/7ota]Time

else 36
if aborting phase, there is no value to be gained directly

Potenu al Value Density (P) = 0
endi C

endfor
form a sorted list of phases according to potential value densirty 41

(highest P'D first In list. low~est PVD last)
SortedList = SertByPVD(PhaseList)

Figure 4-8: Procedural Definition of DASA Scheduling Algorithm

T'he following simple functions are used in the algorithm definiition:

lnsert(element. orderedlist, key)
inserts element in list orderedlist at the position indicated by ke, if there are already
entries in the list with kev value key, insert element before them.

C .108 Scheduling Dependent Real-Time Activities

look at each phase in turn
for P in SortedList

if it has arn potential value, attempt to add it to schedule 46
if (Potential Val ueDensity(P) > 0) then

only add completion i/ it hasn't already been hedu led
if (<complete, P1> i Sched) then

,get a copy of/the schedule/or tentative changes
TentScbed = Sched 51
,- entatively' add 'P' and its dependency list to t'he schedule

InsertQ'zcomplete, P>, TentSched. Deadline(P))
CurrentDeadline = Deadline(P)
CurrentPhase = P

tentatively add phases in dependency list to schedule 56
for <.Mode. Prior?> in Dependency Li st(P)

if (<Mode, Prior?> E TentSched) then
see i/ the phase is scheduled soon enough

DL = Lookup(<Mode, PriorP>. Te ntSched)
if (DL < CurrenLDeadline) then 61

it is; nothing else to do so exit the loop
exitfor

else
Remove(<..Mode. Prior?>, TentSched. DL)

endi f 66
endi f
if (Mode = normal) then

CurrentDeadline = Min(CurrentDeadline, Deadline(Pn-orP))
else

...CurreniDeadline' remains unchanged 7 1
endif

-tentatively add phase to schd-(ile
Insert(<-Mode. PriorP5. TentSched, CurrentDeadline)

endfor
1clean up tentative schedule, as r-equired "76

examine current simnplifications. make less brute force
,test the /easibilir-' of the -entative schedule

if, Feasible (TerntSched)) then
incorporate all of the tentative changes into the schedule

Sched = TentSched 81
else

Sched' remains unr'ianged
endif

endif
endi f S6

end for
,select fi rst phase to execut'e

returf(First(Sched))

Figure 4-8: Procedural Definition of DASA Scheduling Algorithm. continued

Remove(element. orderedhbst. key)
removes element from list orderedhst at the position indicated by key: if element is not
present at that position in the list, the function takes no action.

Scheduling Dependemu Real-ime Acti ltiCS C-JO9

Lookupelement. orderedlist)
returns the key value associated Nx ith thc first occurance of c'H'Ometi in list ordered!, q,

First(ord-credlist) returns- the first element In list orderedist.

Sor1BvPVD phasehst)
returns a list of phases ordered by decreasink P\'D, if t' Ao or marc phases have- the
same PVD, then the phase or phases with thc grecatest required CXC~dtOan time
(ExecCioc k) appear before an% othier A ith the same PVD

Feasible(orderedl'st)
returns a boolean value ,'rue or false) indicating whether the S~hedUle represented b,.
orderedh!,st. an ordered list of mode-phase pairs. constitutes" a fea'sible sc:hedule, as
defined previously (by the function feasible() in Section 3213

Miln(x, v)returrns the mini-mumn of A and -.,

Briefly. the procedure consists of four stages. First, cach phase is cxsrniried to determine its potenti-I

value density and to construct its dependency list. Second. the phases are soricd and placed into an ordered

list -anked by their PVD. Next, a schedule is constLructied by atempt-ng to add each phase. along with all of

the other phases in its dependency list, to the evolving schedule. if this addition produces a feasible

schedule, then tthe phase is included ini th-e schedule; othervxise. it is not. (Some simplifizanons of the

evolving schedule occur at this point as well., Firal, after all of the phases have been considered for

inclusion in the tentative schedule, the schedule's First e'e-mcrt is selected for imnmediate execuoon

The schedule c.-eated by the SeltctPhaseProcfj procedure is an ordere-d lis t of mocl-phnise pairs, each

placed according to the deadline it niust meet. So, for instance, a phase th- miust meet a deaditne at time

t= I will precede a phase that must meet a deadline at time t 2 in the schedlule- If mare than one phase

must meet a single deadline, then the mode-pha._e pair that \,kas addedl to the s.ehcdu>-t &, "l b!e exec.uted

first1.

Notice that the deadlin, a made-phase pair must meet is not neesnvthe deadline asotae ith that

phase. In fact, the phase may ne ed to mneet an earlier deadline it- .order to enable- another -hd.'Q to Mee- its

tine constraint. Whenever a pha-se Ls onsidcred for iriscomton in the tentative 'c:hedu'c 'line- :7 of Figur

4-8.) it is scheduled to meet Its ovrn tiale con~stiaint. liovkever. all ot trie mode-pha ,-e pairs in its

dependency list Must eXeC uic before it can execute and, therefore, mu-st prec it in the ,chedJule.

The variable Currentbeadlinte IS used in Seer tI1hw~Pn~o , to keep track of this txc of schedulinr

consideration Intally, it is set to be fhe cadline of the phase to be ttat'e. icd the sc hed?!e

Thereafter, any, mode-pha-se pair that has a later time -norairt than Currern;)ud'io 11 1 rcequired wo meet

Currenibeadrie. If, however, a mode -pha'-e pair has a ti uitcr leadl inc than C : irrtr,2,t,!+; ':e. the 0i it is

scheduled to meet the tighter deadline, and Curr ,wllDead,'rnc is advun_ ad to that time since all of the

mode-phase pairs left, In the deCpcIndc:ieV 11',, most comnplete by then.

The maljor data stniures, used by Sc/er.h sPhzrif~ro (ame
I. a Phase Control Block ir- for eac qlhiaete 1, scheule it LOt~l hIe d. th

nec-,sarv scheduli parametcers :uM I.E'r(ok h,:/,, io' ac the
name,, of ari, currently requested! or hellI 'hated resour:cs, a rcfcretice:k to) a cnec list,
and a referenrce to, aniother pha.<,e that i;J,Cd to chaiii tP(Jiltolrthoe to hon1/c ll_. I. a

C-110 Scheduling Dependent Real-Time Activities

2. PhaseList is simply a reference to the fu-st phase in the ist subsequent phascs in the list are
found by following the phase reference field in the PCBs;

3. SortedList is simply an ordered list of references to the PCBs;

4. dependency lists are linked lists of mode-phase pairs, each of which refers to a specific PCB;

5 schedules are ordered lists of mode-phase pairs; although many data structures may be
sufficient, assume a balanced binary tree is used here38 (for example, a 2-3 tree); then insert,
remove, lookup and find minimum opeations can all be done in O(log N) time and O(N)
space for a set of N phases.

4.3.3.2. Proof: Procedural Version of DASA Is Polynomial in Space and Time

Given the definition of SelectPhaseProcO, it is possible to demorstrate that it requires an amount of

space and time that is proportional to a polynomial power of the size of the problem: the number of phases

requesting to be scheduled.

Theorem 4: Given N phases to be scheduled using the DASA scheduling algorithm, show that

SelectPhaseProc() will determine the first phase to execute in O(.N log N) time.

Proof. To determine the time required by SeiectPhaseProco. examine the amount of time required for

each of its component steps:

1. create an iitially empty schedule (lines 9-10): 0(1), this requires constant time for virtually
any list structure.

2. construct the dependency List and determine PVD for each phase (Lines 11-10): O(N-*), since:

a. the for loop begun at line 12 is executed N times, once for each phase;

b. if the ExecMode of the phase is not normal, then the loop body takes 0(1) time to
execute (it is a single assignment statement, lines 37-38); however, if the ExecM ode is
normal, then loop body takes O(N) to execute since:

i. lines 14-13 require O(l) time;

ii. because there are no deadlocks, there can be no circular dependency lists:
therefore, the while loop at line 20 will be executed less than N times, and each
time lines 21-33 require 0(l) time; hence the entire while loop requires 0(,)
time to execute in the worst case;

iii. line 35 requires 0(l) time;

3. form a sorted list of phases according to potential value density ,lines 41-43): O(NlogN) if any
of a number of standard sorting algonthms are used (for example, heap sort);

4. tentatively add each phase in turn to the schedule (lines 44-87): O(N*2 log N), sice:

a. the body of the for loop at line 45 will be executed N times, once for each phase;

b. the loop body takes 0(0) time to execute if the phase's PVD is less than or equal to
zero or if the completion of the phase has already been scheduled otherwise, it
requires OfN log N) because:

i. copying the schedule (lines 50-51) can he done in OIN) tune in a
straightforward manner,

"(-2iven a specific trxp of application, experence may indicate that there are beter data struciures for schedule, !or exaimple, if
.here am typically only a few phaes ready to execute, then a mple near, iinked list may he sufficient Dhe tree t.trucre was
,elecwd for generality and because it wiA accommodate large number- oi phases arid dependencies gract lu[ly.

Scheduling Dependent Real-Time Activities C-111

ii. inserting the completion of the phase into the schedule (lines 52-53) can be
done in O(log N) time since there are at most 2N mode-phase pairs in the
schedule (corresponding to an abort and a normal completion for each of the N
phases):

iii. setting up some variables for bookkeeping (lines 54-55) requires O 1) time:

iv. the for loop (lines 56-75) requires O(N log N) time since the loop %riU be
executed fewer than N times aid each execution will require O(log N) time to
perform insert, remove, and lookup operations on the tentative schedule:

v. testing the feasiblity of the tentative sch dule (lines 78-79) requires O(.N log .)
time since it can be done by looking up each of the scheduled mode-phase
pairs in order, summing execution requirements, and companng those
requirements to the actual available time; this requures N lookups. each
requiring O(log N) tine;

vi. incorporating all of the tentative changes into the schedule (lines 80-81)
require O(N) time; this can be done by copying the N nodes that comprise the
tentative schedule over the existing schedule entries;

5. select first phase to execute (lines 88-89): O(log -,) time

Therefore, the overall time to execute SelectPhaseProcO is O(N2 log N).

EndOfProof

The preceding proof uses straightforward data structures and algorithms. An actual implementation may

be able to improve on these. For instance, a number of the calculations performed to compute the PVD for

each phase could be avoided if it was noted that the phase and its dependency list had not changed since the

last execution of SelectPhaseProco. Such an optimization trades storage for speed. Other similar

optimizations may bring additional -avings.

Theorem 5: Given N phases to be scheduled using the DASA scheduling algorithm, show that

SelectPhaseProc() wkill determine the first phase to execute using O(N 2) space.

Proof. The space required for SelectPha~eProc() consists of:

I. a PCB for each phase to be scheduled - this requires ON) space:

2. two schedules, Sched and TentSched, each of which is a balanced binary tree with at most 2N
nodes - this requres O(N) space;

3. space for SortB'PVD() to sort the phases (actually, it will son a set of keys that refer to
individual PCBs) - this requires O(N) space,

4. space for each phase's Dependen' List - this requires 0(0) space for each phase in the
worst case, thereby requiring O(N 2) space overall in the worst case39

5 various scratch variables - this requires O(1) space.

Putting these requirements together, it is seen that, in the worst case, SelectPhaseProc() may require

O(N 2) space.

3
lThis would tru!y be unusual. In order to have very long dependency ists for each phase, the system would have to be nearly

deadlocked and e.ery phase would have to be close enough to completing its normal execuion that it wotuld take longer to abort than
to let it complete normally.

C- 112 Scheduling Dependent Real-Time Activities

Notice that there is no mention of the storage required to track the ownership and state of each of the

shared resources in the system. This is ignored because it is inlormation that is always maintained by the

sy stem for any resource management or scheduling algorithm. No additional cost is imposed by the DASA

algonthm.

EndOfProof

4.4. Notes on Algorithm

The proofs presented in this chapter have allowed the behavior of the DASA scheduling algorithm to be

witnessed under specific circumstances, providing more understanding of the algorithm. This. coupled

with the algorithm's formal definition, may suggest situations where DASA may exhibit unusual or

unexpected behavior.

Each of the following sections discusses one such situation and the attendant algonthm behavior. Where

appropriate, methods for handling the situation are also mentioned-

4.4.1. Unbounded Value Density Growth

While value density and potential value density are appealing because they allow the application to make

the best use of the processor time consumed by each phase, they also display an interesting behavior when

the required computation time to complete a phase approaches zero: the value density, which is value

divided by required computation time, becomes unboundedly large.

This can have some unexpected effects, since - given a sufficiently short required computation time -

DASA will favor executing a phase with a very low actual value over a phase with an extremely high actual

value that requires more time. In fact, this is arguably the proper decision to make, given that the

scheduler's objective is to maximize total value to the application, -ot to execute the phase with the

greatest value.

When assigning values to phases, an application designer may wish to insure that. under any

circumstances, a given phase will be selected for execution over another phase. In order to do this, the

designer must insure that the value density of the desired phase is always the greater of the two value

densities. However, if the value density can grow unboundedly large. then, in general, there is no way to

guarantee that the value density of one phase will always be greater than that of another phase.

A few facts mitigate this problem, though. For one thing. required computation time will never reach

zero because if it did the phase would be done and would not be involved in scheduling decisions.

Therefore, there is a limit on how small the required computation time can be. Hence there is also a bound

on how large a value density can c-ow. The application designer can use this bound to assign values

appropriately.

Scheduling Dependent Real-Time Activities C-113

If that bound is deemed to be too large. then a smaller bound can be imposed by specifying a minimum

amount of computation time that may be requested for completing a phase. If a required computation time

parameter should ever be smaller than this minimum, then the minimum value should be used in its place

when applying the DASA scheduling algorithm.

Evaluating the value density associated with a phase only once. at the time of the phase's initiation,

would also have the effect of avoiding the practically unbounded growth of value densiues. The basic

informaton encoded into the value density metric would remain the same and would be captured

effectively. However, the benefit that arises from evaluating the value density for each schedulig decision

would be lost - that is. there would no longer be a nsing value density to indicate that for a relatively

small investment of processor cycles. a large return in applicauon value could be realized.

4.4.2. Idle Intervals During Overload

DASA is not optimal: it is a heuristic that does well according to important metrics for the class of

real-time supervisory control applications. However, there are overload situations where it can be less

effective than other scheduling algorithms.

DASA constructs a schedule by sucessively adding activities that have the h.ghest PVDs. In this way, each

time an activity, along with any other activities on which it depends, is added to the tentative schedule,

DASA is getting the greatest amount of value for the pro essing cycles that are then resened for those

activities. (If any other activity could yield more value for those processor cycles, it would - by

definition - have a higher PVD. But all of the activities with a higher PVD that can be feasibly scheduled

have already been added to the tentative schedule.)

LBESA adds activities to a schedule according to the nearness of their deadlines: and, in case of an

overload, it sheds the activities with the lowest PVDs until a feasible activity is obtained. As shown in

Section 4.3.2.4, LBESA may shed some activities that can be included in a schedule. This can result in

LBESA utilizing fewer processor cycles than DASA in a given situation.

The factors discussed in the previous paragraphs can collectively yield a situation where LBESA can

produce a schedule representing a higher value to an application than can DASA. For instance, consider an

application consisting of three activities, each of v,hich has only a single phase The phases ar__ designated

P' P 2. and P 3. respectively. Furthermore, assume that at time t = 0 the following conditions hold (using the

notation for the scheduling automata):

C-114 Scheduling Dependent Real-Time Activities

Deadline(p1) < Deadline(p) < Deadline(P3)

PVD(p2) > PVD(p1) > PVD(P 3)

ExecClock(pj) < Deadline(pl)

ExecClock(p.) > Deadline(p,)

ExecClock(P3) < Deadline(P3)

ExecClock(p1) + ExecClock(P3) > Deadline(P3)

Among other things, these conditions indicate that phase p 2 cannot be completed by its deadline, even if

no other phases are executed. Also, either phase p, or phase P3, but not both, can meet their deadlines.

When DASA is presented with this situation, it constructs a tentative schedule by examining each phase in

order of decreasing PVD. Consequently. it will:

1. add phase p, to the (initially empty) tentative schedule, determine that the schedule is not
feasible, and shed phase p,

2. add phase p, to the tentative schedule and determine that the schedule is feasible

3. add phase P3 to the tentative schedule, determine that the schedule is not feasible, and shed
phase P3

This results in a tentative schedule that contains only phase Math[p I].

When LBESA is presented with this situation, it constructs a tentative schedule by examining each phase in

order of increasing deadline. Consequently, it will:

1. add phase p, to the (initially empty) tentative schedule and determine that the schedule is
feasible

2. add phase p 2 to the tentative schedule, determine that the schedule is not feasible, shed phase

PP, determine that the schedule is still not feasible, and shed phase p, (leaving an empty

tentative schedule)

3. add phase P3 to the tentative schedule and determine that the schedule is feasible

This results in a tentative schedule that contauns only phase P 3.

Comparing the results, whenever the value associated with phase P3 is greater than that associated with

phase p,, then LBESA will accrue a higher value than DASA. In addition, this implies:

"alue(P3) > Valuelp 1)

ExecClock(p3) x PVD(P3) > ExecClock(p) x P'VD(p1)
E.zecClockp 3)

x PVD(p 3) > PVD(p:) [> P.D(p).from abo.e]
-- ExecClock(P3) > ExecClockip)

For the DASA-produced schedule, the processor is idle for Deadlinetp 1) - EtecC:ockip 1 units of time,

while for the LBESA-produced schedule, the processor is idle ror Deadhnep 3) - ExecClot kp,) units of

me. Therefore, the schedule produced by DASA has more idle time than the one produced by LBESA -

Scheduling Dependent Real-Tune Actities C-11.5

even though there is an overload and two of three phases that were known to the scheduler were shed.

Consequently, by executing an activit. with a lower value density for a long enough time. while the DASA

scheduler is forced to leave the processor idling. LBESA can accrue a greater value than DASA for an

application.

4.4.3. Cleverness and System Dynamics

The applications of interest for this research are by nature dynamic. A scheduler must be able to react

dynamically in order to produce effective schedules for these applications

Yet there is a balance to be struck. The more information that is used to make scheduling decisions, the

better-informed the decisions are. This typically results in better scheduling decisions. On the other hand.

each decision is made based on the best information available at the time of the decision. At any point

thereafter, circumstances may change - a new request may be made for a shared resource or new activities

may arrive to be scheduled - demanding that new scheduling decisions be made, possibly resulting in

undoing some previously accomplished work.

Intuitively, the more dynamic and unpredictable an application is, the less appropriate clever (read

time-consuming") scheduling schemes are. The actual dividing line for this decision is not clear in

general. The simulations in the following chapter demonstrate DASA'S performance in various situations

and take into account the amount of time required to make scheduling decisions. In fact. the simulator

could be used to determine the effectiveness of the DASA scheduling algorithm compared to another

algorithm for any application.

Scheduling Dependent Real-Time Ac tivities C-117

Chapter 5

Simulation Results

The formal analysis presented in the previous chapter shows that the DASA algontim possesses some

desirable properties. These properties were demonstrated by comparing the behavior of DASA to other

known algorithms. However, this analysis did not evaluate the use of the DASA algonthm in particular

situations, nor did it quantify the gains that could be realized by using DASA to schedule specific workloads.

Simulations were employed to examine these issues, and that work is described in this chapter.

Section 5.1 discusses the design and implementation of the simulator used to evaluate DASA and other

scheduling algorithms. Section 5.2 presents results generated with the sLmulator to evaluate the

performance of the DASA scheduling algorithm. Finally, Section 5.3 hypothetically characterizes two

real-time applications and outlines how the simulation results can be applied to estimate how well DASA

would schedule these applications.

5.1. Simulator Design and Implementation

The first part of this section outlines the set of requirerents that the simulator had to meet. The other

parts describe the design that was adopted and discuss significant implementation issues.

5.1.1. Requirements

Fundamentally, the simulator must allow DASA to schedule a variety of workloads. In fact, there are a

number of ways in which this may be accomplished. Therefore, to guide the simulator development, the

following general requirements were adopted:
1. suppcrt a variety of workloads conforming to the computational model presented earlier -

that is, the simulated workload represents a real-time supervisory control P,',hcation, which
is composed of a number of activities, each of which may have one or raule computational
phases. The activities may share resources as outlined previously in this work. And all of the
assumptions concerning the information that is available to the scheduler, such as the amount
of computation time to complete each phase, continue to hold. The set of applications that
can be run must be rich in order to allow a significant range of applications to be explored.

2. offer standard statistical distributions for use by the application - to examine the behavior of
a scheduler under general conditions, it is often converuent to assume that events occur
temporally according to a stanuard staustical distrbution, such as a normal or a Poisson
distribution.

3. incorporate useful metrics and gather statistics - the metncs are intended to aid in the

C-118 Scheduling Dependent Real- Time .Activities

evaluation of scheduler performance. For instance, the number of time constraints satisfied,
the number not satisfied, and the total application-specific value accrued are all
straightforward examples of useful metrics that the simulator should support.

4. allow evaluation of multiple scheduling algorithms and resource management policies - the
primary objective of the simulations is to compare the performance of DASA with that of other
algorithms. Therefore, the simulator must accommodate a set of well-known scheduling
algorithms, including priority, deadline, and best-effort schedulers. In addition, since DASA
also makes all of the shared resource management decisions, the simulator must provide
several alternative resource management policies, including FIFO and deadline queueing for
shared resources that are not available.

5. provide a uace of the scheduling events and decisions made during a simulation - this
information is useful for at least three reasons: (1) it allows a detailed inspection of scheduler
behavior to identify specific beneficial or detrimental decisions, (2) it makes available raw
data that may be processed to generate other meaningful statistics for any specific scheduler,
and (3) during the initial implementation or subsequent modification of a scheduling
algorithm, the event trace can be examined by hand or by machine to demonstrate correct
behavior.

6. possess the flexibility to adapt to changing requirements or to augment the initial capabilities
of the simulator - since the simulator is used to examine algorithms under a wide range of
circumstances and the appropriate metrics are not necessarily known in advance, flexibility is
desirable. In addition, if the simulator is to be useful over time, it will have to be able to
accommodate new algorithms that will be developed, which may or may not resemble those
that already exist. By choosing internal interfaces carefully, this is not too demanding a
requirement-

The simulator developed meets all of these requirements, as explained in the following sections.

5.1.2. Design

The simulator design compartmentalized major functions so that different workloads and scheduling

algorithms could be accommodated. As shown in Figure 5-1, the simulator features several independent

parts:
1. a set of shared resources,

2. a set of application activities, each potentially comprising a seqeunce of computational phases
governed by a time-value function, that may access the shared resources,

3. a Simulated Operating System. including an Integrated Scheduler - that is, a scheduler that
not onl :nanages processor cycles, but also controls access to all shared resources, and

4. an Activity Generator that adds new activities to the application.

5.1.2.1. Activities and the Activity Generator

The Activity Generator initiates the application by creating the first activity or activities. It may

subsequently create others while the simulated application is executing.

The activities comprising an application may either be chosen from a library of existing activities or they

may be written specifically for the application. In this way, any activity can be included in an application.

In addition, customized Activity Generators can be written to iruntiate these activities at any time, obeying

Scheduling Dependent Real-Time Activities C-119

Shared Resources

Application Acnvities

Activity
Generator CD 0

Simulated Application
Simulated OS

Inegated Scheduler

Figure 5-1: Logical Structure of Simulator

any constraints imposed by the actual application being simulated. Therefore, this scheme will support

arbitrary workloads.

The activiues may mimic computations performed by real applications or they may consume processor

cycles and access shared resources in patterns similar to actual or potential applications.

Whenever necessary, an activity will interact with the Simulated Operating System to acquire specific

ser'vces. The requests made to the Integrated Scheduler, such as requesting the start of a new

computational phase or requesting access to a shared resource, are of particular interest for this research.

5.1.2.2. Integrated Scheduler

The interface to the Integrated Scheduler conforms to the interface described in Section 2.3.2 for the

General Scheduling Automatun Framework. incoiporating scheduling events that are concerned with both

F, ocessor cycle management and shared resource management.

Scheduling algorithms are embodied in Integrated Schedulers, and different scheduling algorithms can be

compared by executing the same application using various Integrated Schedulers.

The requests made of the Integrated Scheduler can naturally be divided into two groups: (I) those that

deal fundamentally with phase execution (that is, 'request-phase,' 'abort-phase,' 'preempt-phase,' and

C-120 Scheduling Dependent Real-Tirne Activities

resume-phase') and (2) those that deal fundamentally with resource management (that is, 'request' and

grant'). Traditionally, these two groups of requests have been handled by two different entities - the

scheduler and the resource manager. respectively. The simulator design at the highest (interface) level

hides that distinction. Internally, however, for typical scheduling algorithms requests are routed to the

scheduler or the resource manager.

On the other hand, DASA is an integrated scheduling algorithm in this sense, and so all of the requests

originating from application activities are directed to the DASA scheduling module.

5.1.3. Implementation

Given a design, the implementation of the simulator raises several new issues, including the selection of

the tools to build the simulator, the languages to be used, the interface presented to the experimenter, and

the structure of the implementation. Some of the more interesting aspects of these issues are discussed in

the following paragraphs.

5.1.3.1. Approach: Build from Scratch or Adapt an Existing Simulator

There are several different approaches that may be used to produce the simulator descnbed above, and

selecting one of them is the first major implementation issue to be resolved. For example, the simulator

may be custom-built from scratch. This approach allows the simulator to be precisely tailored to meet the

goals of this investigation. On the other hand, if an existing simulator could be found that is similar in

purpose to the desired simulator, then it might be modified to satisfy the present goals. Possibly, this could

be done quickly to generate useful results.

In fact, the approach used - writing the simulator using SIMSCRiPT tI.5, a programming language

intended for si; lations - falls between those two extremes. It builds on previous work, while allowing a

large degree of customization.

sIMSCRWT provides a basic framework and a number of useful libraries, including a random number

generator and a full complement of probability distributions. Using s.,ISCRITr obviates the need to

reimplement and debug these features for a simulator. In addition, SIMSCR1PT provides a programming

abstraction called a process that is well-suited to model an activity. These processes may control their own

(virtual) execution, as well as that of other SIMSCRBJT processes. The code that comprises the Integrated

Scheduler is executed by pro'-sses when they initiate a scheduling event. The scheduling algorithm

dictates the resulung outcome: either the executing process will continue to run or it will block it_,;lf %xhile

unblocking its successor. Programming constructs exist to consume kvirtual execution time, and

s;.MsCR1 P manages the advancement of virtual time.

SiMSCR.iPr also supports a programming abstraction called a resource to embody shared re.;ources.

However, this abstraction, although providing the services of a typical resource manager. was not flexible

for the purposes of this work, where the resource management decisions ae more closely tied to scheduling

decisions. Therefore. some of the resource features of s'Nisc-ar weie superceded for these simulations.

Scheduling Dependent Real-Time Activities C-121

The use of a simulation programming language provided sufficient freedom so that the Integrated

Scheduler could be implemented in the modular fashion described in the design discussion. If an existing

simulator had been chosen as the vehicle for this work rather than a simulation language, then the

organizational structure imposed by the simulator might have precluded this possibility

5.1.3.2. Source of DASA Implementation

The version of the DASA scheduling algorithm that was included in the simulator was adapted from the

procedural version of the algorithm presented in Section 4.3.3.1. A procedural version had to be used,

since SImSCRJPT is a procedural language. A straghtforward translation convened the Section 4.3.3.1

version into a SIMSCRIPT version.

5.1.3.3. Single Scheduler for Simulation

The simulator uses only a single scheduling algorithm (and associated resource queueing discipline) for a

given simulation run. The simulator allows the arrival of new activities and phases to be regenerated

exactly for specified simulation runs. Therefore, comparing two scheduling algorithms requires two

different simulation runs, one for each of the algorithms. Both runs present identical input to the

scheduling algorithms. A subsequent examination of the statistical metrics and the scheduler performance

for each run can then reveal which algorithm was more effective in the simulated situation.

5.1.3.4. Simulator Display Messages

By default, the simulator displays all of the key information regarding a simulation run to the

experimenter. This includes a timestamped message announcing the arrival of each new computational

phase that must be scheduled, along with its time constraint, required execution time, value, the number

and identity of the shared resources that it will require, and the time interval between each pair of shared

resource acquisitions (in terms of actual execution time, not real time). Notice that although the simulator

prints information about shared resource needs of a phase at its outset, this information is not available to

the scheduling algorithms when the phase is initially presented to the scheduler. Rather, each new resource

request is made by the phase at the moment the resource is needed. Only at hat point is the scheduler

made aware of the need for that patILular resource. The information about all of a phase's resource

requirements is printed out wht-n the phase irutiallv amves only as a minor user convenience - it allows

all of the requirements information for the phase to be presented together in one place,

Other time-stamped messages are displayed to the experimenter each tine a resourcc is requested or

granted or a phase is preempted, resumed, or aborted.

Additionally, a simulation profile is printed that identifies the scheduling aleonthm and resource

queueing discipline employed, the number of shared resources available, and other workload specific

statistics, such as the average interamval time between phases or the average required execution time for

each type of phase.

Finally, a statistical summary of the simulation is displayed at the contlusion of tlwi run. It prints general

C-122 Scheduling Dependent Real-Time Activities

statistics including the total number of phases. the number that met their time constraints, the total value

represented by all of the phasesU. and the value actually accrued by the scheduler dunne the simulatiou.

Other statistics that are of interest for a specific scheduler or workload can also be displayed at the

conclusion of the simulation.

All of the messages displayed to the experimenter can be redirected to a file to record the simulation

results for later analysis. In this case, the experimenter is offered a summary cf the simulation in addition

to the log file.

5.1.3.5. Modifications

There are a number of modifications that may be made to the existing simulator, and these modifications

can be divided into two groups. First, there are the changes that the simulator was designed to

accommodate, for instance, the addition of a new scheduling algorithm or a new resource queueing

discipline. Second, there are changes that may be anticipated, but ..ere not specifically provided for in the

simulator. Extending the simulator to handle multiprocessor scheduling is an example of the latter type of

change.

Provisions have been made to facilitate the anticipated modifications of adding new scheduling and

resource queueing policies, To add a new policy, a set if routines must be written, one routine to handle

each scheduling event. These routines are named according to an existing convention. The name of the

policy is added to the menu of policies available to the experimenter. And finally, the new routines are

compiled and linked Aith the existing simulator.

Since the information required or the data structures used by different scheduling policies may vary

significantly, new data fields and structures may be associated with each activity or computational phase.

Once again, a naming convention has been adopted for labeling these fields and structures to avoid

conflicts with existing fields and structures.

The simulator has been structured carefui, so that modifications that could not be anticipated precisely

can be handled gracefully. There is no single porint in the simulator where all statistics may be gathered

and processed. As new statistics are defined, it is likely that at least some of them will have to be inserted

in code at locanons determined strictly by the scheduling algorithm being examined.

Preparations have been made for some other potential modifications. Some data structures have been

defined to be more general than necessary, for the purpose at hand. For instairce, the number of application

processors that are bein, scheduled is a variable and there is an array containing the relevant state for each

of the currently executing activities. Of course there is only one execuung activity under tie model being

investigsted by this work. However. in the future the simulator framework *nay be able to accommodate

"'Notice that It may not he possible to attain this vaiue. e.en v..th tomplete kno,,,!edize f lit phases and iieir ,"Quirmments.

Alaining this total "aiuc may be rmposible due :o inut:_ccint proc sinq c.cles or rrsource. a ijabij ity for ,,crrw p -irton of the
simulation. It does serve as a leat ipper bound on the yalue -bat may be , tined b' any scheduier

Scheduling Dependent Real-Time Activities C-123

multiprocessor scheduling. At that time, since many, if not all, of the scheduling algorithms will have to be

modified to handle multiprocessor scheduling and use the simulator's data structures in a more general

way, it is clear that a great deal of work is required to make this modification to the simulator.

5.2. Evaluation of DASA Decisions

This section evaluates the decisions that DASA makes compared to the decisions made by other

scheduling algorithms and resource queueing disciplines. A general, parametenzed workload is used to

exercise the simulator with varying degrees of processor utilization and varying numbers of shared

resources.

5.2.1. Methods of Evaluation

The utility of a scheduling algonthm may be demonstrated in a number of different ways. The following

paragraphs deal with four major approaches that correspond to four different workload sources.

52.1.1. Execute Existing Applications

Perhaps the most compelling method would be to employ the algorithm in an instrumenttd. production

system and compare the system performance directly to its performance using other al L nthms. Using this

approach would yield the most direct, relevant information regarding the applicability of thf, scheduler for a

given application.

There are three major problems with this direct approach. First, although it definutely evaluates the

performance of the scheduler for a specific application, it is not clear that the information gathered can be

applied to any other applications, and if can, under what circumstances. Since this work is addressing a

general problem. the ability to make statements that apply to a general class of applications is desirable.

If a wide range of exisung applications can be executed directly, this problem can be eliminated and more

general results can be denved- However, since many real-time systems today are still custom-designed

with customized or propnetary operating systems, finding a large number of real applications that execute

under the same operating system may be difficult. Alternatively, modifyimg the schedulers of several

different operating systems mav be very difficult lo-,stically.

The second major problem with the direct approach is mire specific to the DASA algonthm: the

algorithm is sigruficantly different than those that are ursed in practice today, and it expects that the

application will provide the scheduler with more information than is normally the case. (Specifically, the

scheduler should be given an estimate of the required computation tume needed to execute each new

computational phase.) A!thougb :his information is often known to application designers and

implementers, it is not communicated tc the scheduler. As a result, the interface to the scheduler that the

application sees is different for the DASA algonthm than for traditional algonthms This requires tha:

every application used must be altered to provide that additional information to the scheduler, possibly long

after the people vho knew the information are no longer available or able to provide it.

C-124 Scheduling Dependent Real-Time Activities

The final major problem results from the fundamental difference in philosophy between traditional

real-time systems and the more dynamic systems that could employ a scheduling algorithm such as DASA.

Traditionally, many real-time systems are designed to be quite specialized with minimal overhead resulting

from operating system functions. In fact, the designers of these systems attempt to eliminate operating

system functions insofar as possible, often either reducing it to the point where it is more correctly termed

an executive or eliminating it entirely by having the application perform all required functions.

In such real-time systems, not only are operating system functions limited, but the information supplied to

the operating system is minimal. For example, the computational and timing requirements of a given set of

activities may be sufficiently studied so that it is possible to replace a priority scheduler, for example, with

a list scheduler or a rate-group scheduler. Neither the list scheduler nor the rate-group scheduler display

dynamic behavior - at predetermined times they dispatch predetermined activities. All timing and

dependency considerations have already been taken into acount by the system designers. and the real-time

system is unaware of any of this information 1 .

As a result, the implementations of real-time systems traditionally distort the application's structure. For

example, often physical processes are modeled as periodic, even if they are not, in order to simplify

scheduling and increase system predictability. Or shared data is accessed directly (without using an access

control mechanism such as a lock) because the activites have been designed and placed in a sufficiently

static schedule that it can be demonstrated that no conflicts can occur.

The philosophy underlying DASA resides at the opposite end of the spectrum: in order to handle dynamic

applications today and to effectively accommodate application modifications tomorrow, the system always

decides which activities should be run, relying on key information supplied by the application. Rather than

changing the application in order to restrict the information passed to the operating system in the hope of

reducing the run-time computation performed by the system - rendering the application difficult to adapt

along the way - the application is encouraged to provide the system with as much relevant information as

possible, thereby potentially allowing the system to make better decisions on behalf of the application.

Unfortunately, this philosophical difference implies that the same application designed and implemented

according each philosophy will produce very different code. Once again, this limits the ability to validate

the effectiveness of DASA by simply using it to schedule existing applications. It is quite possible, for

example, that an existing application employs shared memory but, as mentioned above, never issues any

requests for access to the shared resource because an appropriately restrictive schedule makes it

unneccessary. It is extremely unlikely that DASA could demonstrate improved performance under such

constraints.

4
'
t
Qne of the most unfortunate aspects of Such ,'stems becomes evident when the, mumt be mod-ified - perhaps to impiement a

new function or to add an improved device. Then all of the timing and dependency analyses must be performed again. In ta.t.
modifying L.,.. sv",% may cost nearly as much as the oneinal implementation.

Scheduling Dependent Real-Time Activities C-125

S.2.1.2. Modifying or Reimplementing Existing Applications

The preceding discussion emphasizes the difficulties involved in using existing applications directly to

evaluate DASA.

Two of the problems mentioned above - DASA requiring more information than is traditionally supplied

to a scheduler and implementations that hide application structure and information from the operating

system - can be addressed by modifying existing implementations or by reimplementing them. The new,

resulting implementations could then be executed using several different schedulers to evaluate the relative

effectiveness of each scheduling algorithm. However, in order to justify any results gained by this

approach, the 'new implementations would have to be verified in some manner. Specifically, they would

have to be demonstrably equivalent to the original implementations in all important respects. For real

applications, which are often large and complex, this vague-sounding requirement could be arbitrarily

difficult to satisfy.

52.1.3. Modeling Existing Applications

Creating skeletal applications that represent real applications reduces the amount of work required to

produce each application, but complicates the problem of proving that an abstracted application

corresponds to the real application in all important ways since, by definition, some details of the application
will have been discarded. Justifying that the selection of which details should be retained and which should

be eliminated or how all or part of the application should be modeled is once again a vague requirement

that would have to addressed in an ad hoc mariner for each application in all likelihood.

As with each of the preceding approaches to providing a workload to use to evaluate the DASA scheduling

algorithm, this method is only capable of providing information concerning the specific workloads used.
There is no guarantee that those applications are representative of real-ume supervisory control applications

in general, and these limitations must be addressed.

5.2.1.4. Simulating the Execution of a Parameterized Application

The final potential approach to evaluate DASA, and the one actually used, employs a parametenzed

application or set of applications. The execution of these applications can then be simulated under various

scheduling algorithms and performance measured. By selecting useful parameters and varying them over
ranges of values more general results can be obtained from this workload than could be drawn from a

specific set of applications.

Furthermore, the simulator built for this evaluation can be given an arhitrary application (workload). This

allows an experimenter to model a potential application with any desired amount of detail, simulate the

application's execution using various schedulers, and decide u-hether the application can benefit from the

use of the DASA scheduling algorithm.

Short of building an application model for execution on the simulator, u,,eful information is still available

to allow people with real-time applications to decide if DASA may hc of interest to them. The simulation

C-126 Scheduling Dependent Real-Time Activities

results that follow span a significant portion of the space of real-time supervisory control applications,

based on the variation of a few key metrics. If necessaryN, additional simulations could be performed in the

future to extend these results to other regions of the space or to accommodate new metrics. Given the

existence of these data, an application designer or implementer can either profile an existing application or

create a thumbnail sketch of a new application to determine where the application lies in the supervisory

control space and whether any benefit may accrue if the DASA scheduler is used.

This method - simulating the execution of parameterized applications - was chosen to investigate the

utility of the DASA scheduling algorithm because of its ability to evaluate the algorithm over a wide range

of situations, rather than just a few specific applications. At the same time, it is able to give generally

useful information to real-time applicatic designers and implementers for various conmditions and then

allows them to investigate their application to any desired degree of detail by means of a specific model for

their application. This model can be evaluated using the DASA scheduler, as well as a number of other

schedulers of general interest. Once again, new schedulers can be added to enrich the simulator if needed

or desired.

Thumbnail sketches of real applications that may benefit from the use of the DASA scheduler are

presented in Section 5.3.1.

5.2.2. Workload Selection

The workload used to gather the simulation results that follow featured one basic type of activity that was

tailored by a number of parameters. In this workload, each activity consisted of only a single phase. The

arrival times of the activities could be drawn from any of a number of probability distributions, and the key

parameters that define each distribution - such as the mean for a Poisson or an exponential distribution,

the mean and standard deviation for a normal distribution, or the minimum and maximum for a uniform

distrbution - were specified by the experimenter.

The time remaining until a phase's deadline is also drawn from a specified probability distribution and

must always be in the future. Once a deadline has been selected, a fraction - drawn from a uniform

probability distribution - of the time remaining before the deadline is specified as the required

computation time of the phase. Once again, this is always less than or equal to the amount of time

remaining until the deadline. Consequently, any such activity executing in a system with no other activities

would meet its time constraint. Therefore, any time a time constraint is not met, this is due to the

interaction of multiple concurrent activities.

Given the method of generating new activities, their deadlines, and required computation times, it is

possible to generate sequences of activities that may not all be completed successfully. This is clear if the

parameters specify a condition where the system is overloaded - for instance, if the average required

computation time for an activity was more than the average interarnval time between activities. However.

even in situations where, on average, there is a significant amount of idle time, there may be transient

overload condition- due to the probabilistic nature of the parameter selection.

S~heduling Dependent Real-Time Activities C-127

The values that are accrued by completing an activity's sole phase by its deadline are also taken from a

selected probability distribution.

Finally. the number of shamed resources is specified by the experimenter. If there are shared resources,

then each activity probabilistically determines how many of these resources it will require during the

execution of its computational phase. It then selects that number of shared resources randomly. The

resource requests are made sequentially with some amount of processing time expended between shared

resource requests. The time that passes between each resource request is determined by selecting a fraction

of the required computation time for the phase that remains at the time of the previous resource request.

For each shared resource, the experimenter may specify the amount of computation time that must be spent

to return the resource to a consistent, usable state in the event that the phase is aborted.

Although the resources required by a phase are generated randomly, the actual resource requests are

ordered to avoid deadlocks since that is not a primary focus of this work. This is accomplished by

associating each resource with a unique key. where all of the keys may be ordered. Requests are then made

in increasing order of resource key value. In this way. deadlock cannot occur since it is impossible for any

phase to both hold a shared resource that is needed by another phase and to need a shared resource already

held by the same phase.

5.2.3. Examination of DASA Behavior

A series of experiments were performed to determine the effectiveness of the DASA scheduling algorithm

relative to several other algorithms of interest.

5.2-3.1. Workload Parameters and Metrics

These experiments used the parameterized workload described in the previous section. In this case,

activities arrived according to a uniform probability distribution. The time between successive activity

arnvals, which is called the interarrival time, is between zero and a designated maximum value. This

maximum value is vaned to examine scheduler behavior under different levels of processor loading.

The deadline for each activity is also drawn from a uniform probability distribution, varying from zero to

200 time unts (TUs).

A straightforward load metric is employed for the simulations presented in this section. For these

simulations, the expected activity interarriva time is half of the maximum activity interarrival time.

Similarly, the expected time remaining until deadline is half of the maximum time remaining until deadline

- in this case, 100 TUs. The requred computation time for a given activity is expected to be half of the

time remaining until its deadline, or 50 TUs. The load metric, then, is simply the expected time required to

complete an activity divided by the expected time between successive activity arrivals.

By selecting maximum activity interarrival times from 800 to 50 TUs, the range of processor loads that

can be examined extends from 0.125 (fairly light load) to 2.0 (twice as many cycles arc required as ar

available, on average), respectively.

C-128 Scheduling Dependent Real- Time Activines

There are two reasons for referring to times in terms of TUs, rather than seconds. milliseconds, or

microseconds. First of all, different real-time applications have time constraints that cover a wide range of

absolute times. Industrial supervisory control applications typically have time constraints that are

measured in seconds or hundreds of milliseconds. Simulators and many military apphci uons may have

time constraints that are on the order of tens or hundreds of milliseconds. And lower-level control systems

can have even tighter time constraints. By using TUs, this work is not arbitrarily associated with a single

class of application. Rather, it seems reasonable to expect that, in the future, these scheduling algorithms

can be applied to progressively more demanding real-time applications as processor speeds increase and

improved real-time computer architectures are devised.

TUs were also used to allow the results presented here to be reevaluated as technology does change. In

particular, the ov-,rhead that is incurred by using relatively complex scheduling algorithms can he

expressed in terms that reflect the technology of the time, such as the time required to perform a

multiplication or division operation or the time required to sort a list. As technology changes, the overhead

changes as well.

This can be contrasted with the real-time application being scheduled. Often, the time constraints that

must be met are dictated by the application itself - a real world physical process that is subject to the laws

of physics for example. Improved computer technology does not affect these time constraints. although it

typically affects the application by reducing the amount of processor time that is required to execute any

given piece of code. So while the time constraints for a specific physical process remain fixed, the absolute

time required to execute both the application and its scheduling algorithm are reduced as technology

progresses. This will tend to increase the domain ,, which complex schedulers may be used in the future.

By expressing both the time constraints and the scheduling overhead in terms of ThUs, it is possible to

determine what range of time constraints are appropriate for a given scheduling algorithm. To do this, a

conversion from real time units (such as milliseconds) to TUs can be computed by noting the time required

to perform the basic operations that dominate the scheduling algorithm ir question. and therefore are most

responsible for its overhead. Using this conversion factor, the application time constraints can be expressed

in terms of TUs. Then, a simulation that directly mimics the application in question, including scheduling

overhead, can be run, or a more general set of simulations that take scheduling overhead into account can

be consulted to determine the applicability of a given scheduling algorithm.

The values associated with the phases varied uniformly from one to ten. A minimum value of zero w s

not used since that could be interpreted as a worthless process, hence one that need not be scheduled.

A fixed number of shared resources was used for each set of simulations. The results shown in Figtr--s

5-2 through 5-7 correspond to simulations employing zero, one, and five shared resources. Since DASA was

the only algorithm that could abort specific phases, the undo times for the shared resourc, were defined to

be (essentially) infinite. In that way, DASA would not schedule aborts and its be" .vior would be more

comparable to that of the other algorithms under consideration.

Scheduling Dependent Real-Time Activities C-129

Three other scheduling algorithms were chosen to compare with DASA: DL, a simple deadline scheduler,

SPRI. a static prionty scheduler, and LBESA, Locke's Best Effort Scheduling Algorithm.

These algorithms illustrate a number of points. DL and sPRI apply only urgency or only importance

informaton. respectively, while LBESA and DASA consider both types of information. From another point

of view, DL represents the simplest type of deadline schedul - it simplies dispatches activities in order

of increasing deadline. If there is an overload, rather than shedding some activities, it continues to schedule

all activities in deadline order. LBESA provides an advanced load-shedding capability in a deadline-based

scheduler. And DASA continues to extc.ld this load-shedding by considering more activities for execution

than the other algorithms. Finally. SPRI must be included since it is the algorithm that is actually used by a

large number'of supervisory control applications.

Shared resource management for each scheduler (except DASA) is handled quite simply: if a requested
resource is available, it is immediately allocated to the activity requesting it. Otherwise, the activity is

entered in a FIFO (first-in. first-out) queue for that particular shared resource. When a resource is freed at

the completion of a computational phase, the first activity entered in its waiting queue is removed from the

queue, given access to the shared resource, and made ready to run. The scheduler may subsequently

resume its execution. (Notice that while activities are blocked waiting for a shared resource, they are not

considered by any scheduling algorithm other than DASA.)

For each combination of maximum activity interarrival time, number of shared resources, and scheduling

algorithm, a series of ten simulations were performed. In each simulation, 100 activities were generated

and scheduled.

The information gathered by the simulator included a few key metrics: the number of deadlines that were

met and the total value represented by all of the activities and that portion of the total value that was

actually accrued by the application executing under a given scheduling algorithm. These were reduced to

percentages indicating the fraction of deadlines that were met and the fraction of the available value that

was obtained.

In addition, the simulator generated an event log that could be examined in order to analyze individual

situations and decisions made by various scheduhng algorithms.

5.2-3.2. Scheduler Performance Analysis

The simulations described in the previous section were performed and the results are shovn in Figures

5-2 through 5-7.

Figures 5-2 through 5-4 show the percentage of total available value that was actually obtained and the

percentage all deadlines that were actually met when there were zero, one, and five shared resources.

respectively, under a variety of processor loads. In these figures, the geometric mean for each scheduling

algorithm's performance is plotted as a function of average processor load.

C-130 Scheduling Dependent Real-Time Activities

Q 100 -E0 DASA
Alt 100- LBESA

-~Static PriorityS90 ------ + Deadline

,b 80-'~.

21 70- h

60-

so-S

40 S.

30-

20-

10

01
0.00 1.00 2.00

Load

% Value Obtained

S100- 0- - -0 DASA
* X- - LBESA

U~ ~ -*Static Priority
go-- Deadline

80 . --.

*70-

~60-~N

50-~ N..,

40-
30--

20-S

10 5

0 4

0.00 1.00 2.'00
Load

% Deadlines Met

Figure 5-2: Average Scheduler Performance with No Shared Resources

Scheduhng Dependent Real-Time Activities C-131

100 - -- DASA

-- Static Priority
90. - Deadline

%6 80*'N -

. 0

60

50 N,

40 X "" .

30 ' -

20

10 -

10 Lo I
0.00 1.00 2.00

Load

% Value Obtained

0, - G- - DASA

-- LBESA
9•- Static Priority

90 *- .' - Deadline

80 - jz

670-\ ~ -

~ 60 .•. .50-

40

30"

20 .

10
........

0
0.00 1.00 2.00

Load

% Deadlines Met

Figure 5-3: Average Scheduler Performance with One Shared Resource

C-132 Scheduling Dependent Real-Time Activities

S10-~ -- DASA

- * Static Prioritygo - .0' Deadline

8 0-
"- A_

"X. .

6 0-

30 \ .. .\
40

0.00 1.00 zoo
Load

% Value Obtained

0- - E4 DASA
* 00-- LBESA

~ 90- -~Static Priority
9-. .. - Deadline

~80- %

70

cc 60 - *

50o-

40 V n

30-

20-

10-

0
0.00 1.00 2.00

Load

% Deadlines Met

Figure 5-4: Aver-age Scheduler Pericirrance with Five Shantd Resources

Scheduling Dependent Real-Time Activities C-133

All of the scheduling algorithms perform well under small loads. There are sufficient processing cycles

that the exact scheduling algorithm makes Little difference. As processor load increases, all of the

algorithms become less effective and the differences among them become more apparent. Of course, for

loads greater than 1.0. it is impossible to complete all of the activities on time - there are simply not

enough processor cycles to satisfy demand. Even for loads that are less than 1.0. there are usually intervals

that represent momentary overloads - that is, short inteivals of time wherz it is not possible to cemplete

all of the activities on time - due to the probabilistic nature of the workload. (Consequently. obtaining

100% of the available value or meeting 100% of the deadlines for a simulation is often impossible.

However, it serves as an absolute upper bound on the performance of the scheduling algorithms.)

DL drops most rapidly in performance, pnmarily due to the fact that it does not shed load. This was done

intentionally to show an extreme behavior of deadline-based scheduling. LBESA and DASA represent

another extreme since they generate schedules that are deadline-ordered and only depart from deadline-

ordered schedules when overloads are detected. As shown in Figure 5-2, even when there are sufficient

processor cycles, on average, it is still difficult to meet many deadlines using the DL scheduler.

DL does not degrade appreciably with different numbers of shared resources because the overload

behavior just described dominates its behavior.

SPRI degrades smoothly as load increases. As more shared resources are added, increasing the interaction

of the activities, its performance decreases more rapidly as a function of load.

LBESA exhibits a few noteworthy tendencies. First of all, when there are no shared resources, it typically

meets more deadlines than SPRI, while accruing less value. This is partially a consequence of its time-

driven orientation compared to the.value-driven nature of spm. Like SPR1, it also displays graceful

degradation as load increases and there are no shared resources.

When there are shared resources. LBESA performs quite differently. It typically performs much worse

than any of the other algonrthms at relatively low processor loads This results from a particularly

unfortunate interaction between the scheduler and the shared resource manager.

As was pointed out eariier, the actions of the shared resource manacer constitute indirect scheduling

decisions by blocking activities that had been executing and subsequently determining the order in which

they are again made ready (and become visible to the scheduler).

The problem with LBESA and the resource manager arises when an acti ity requests a shared resource that

has previously been allocated to another activity. The requesting activity is then blocked and placed in the

FIFO queue for the resource. Later, the resource is allocated to the activity and the activity is added to the

ready list for the scheduler. However, if the activity nevers completes its current phase - either because

there is insufficient time to complete it by its deadline or its value density is too low to prevent it from

being shed during an overload - it will hold the resource indefinitely. Therefore, all subsequent activities

that require access to the reource will fail to meet their deadlines. Of course, this scenuio does not result

every time an allocated shared resource is requested. But, it does happen occasionally even at low

processor loads.

C-134 Scheduling Dependent Real-Time Activities

DL and sPR/ are not susceptible to this particular interaction because they don't shed load. They

eventually execute every activity that arrives. Consequently, any activity that acquires a shared resource

will eventually complete execution of its current phase and release the resource. Only algorithms that shed

load must be concerned about the fact that activities that are shed may be holding shz-ed resources4 2.

DASA also degrades gracefully as processor load increases, managing to accrue more value and meet more

deadlines then any of the other algorithms in these simulations. Even with a load of 2.0, DASA obtains, on

average, over 55 percent of the available value - over 25 percent more value than any of the other

algorithms.

DASA is not subject to an unfortunate interaction with the shared resource manager since it manages the

resources itself. Like LiESA, it will recognize that some activities holding shared resources cannot meet

their deadlines and so will not schedule them. However, unlike LBESA, DASA will realize when another

activity that can still meet its deadline needs the previously allocated resource and will attempt to execute

the activity holding the resource in order to enable continued Drogress by the application. In this way,

processor cycles are not consumed to free allocated resources unless there is an immediate need for the

resources. This is in keeping with the general philosophy that the system should always perform the

activities that will be most valuable to the system at any time - processor cycles are not expended to free

allocated resources unless there is value in doing so.

In Section 4.3.2.4, it was shown that DASA could accrue more value than LBESA in during overloads

because LBESA could shed some activities unnecessarily. However, it is impossible to prove analytically

how often the necessary overload conditions will arise for an application. The simulation results presented

in Figure 5-2 show that this effect is quite pronounced under overload conditions - with a 2.0 load. DASA

obtains, on average, about 35 percent more value and meets about 30 percent more deadlines than LBrSA.

(Since there are no shared resources for these simulations, the interaction of LBESA and the shared resotirce

manager has no effect on the simulation results. Under low loads, DASA and LBESA are expected to perform

similarly, and under high loads their differences should be due to differences in load shedding.)

Figures 5-5 through 5-7 display more information concerning the simulations described earlier. Where

Figures 5-2 through 5-4 plotted the geometric mean for each scheduling algorithm under various loads with

differing numbers of shared resources, Figures 5-5 through 5-7 show the range of values obtained and

deadlines met in each of these situations. In addition, the arithmetic mean is shown as a box placed along

the range; the geometric mean Ls shown as a star, and the harmonic mean is shown as a diamond. As

always for nontrivial data sets. the arithmetic mean is greater than the geometric mean. which is greater

than the harmonic mean, for each case. However, the means are often so close that their'symbols appear

superimposed in the figures.

4"BE.. has been modified to execute in the Alpha Operating System. Several adaptations were necessary to use the algonthn in

Alpha. "',e Alpha programming model treats unsatisfied time constraint% and communicaton failures, among others, as exceptions.
When an exception is encountered, an a.ssociated handier is executed. This handler restores system data stncrures to acceptable states
and offers the application programmer the opportunity to do the same for application data structures and tiN ity state. This offers the
opportunrty to free shared resources in practice after an unsatisfied time constraint, even thou6 the Ui.SA model does not address
shared resources.

Scheduling .Dependent Real-Time Activities C-135

S100-

30.* Q. 4 ''4 0-

20

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Varying Load, No Resources

UUC

1 90

o * 80

* 30 99;,:

40

10

80

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Varying Load, No Resources

Figure 5-5: Scheduler Performance Range with No Shared Resources

C-136 Scheduling~ Dependent Real-I ime Activities

S100-

60-

40 *

30- .U V

20-

10
0

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Varying Load, One Shared Resource

80 l

70 ,4 ,
q~60 I

40

30 -WU

10

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Varying Load, One Shared Resource

Figure 5-6: Scheduler Performance Range with One Shared Resource

Scheduling Dependent Real-Time Activities C-137

r 100

90 *

0-

o 60- <>
50

40-

30 -.

20-

10

0
0.125 0.25 0.5 0.67 1.0 1.33 2.0

Load

Varying Load, Five Shared Resources

S100-

90

* 80 h

so-a
Vayi70oa, iveSae eore

0 -

30 CcV
30-

10

0
0.12S 0.25 0.5 0.67 1.0 1.33 2.0

Load

Varying Load, Five Shared Resources

Figure 5-7: Scheduler Performnance Range with Five Shared Resources

C-138 Scheduling Dependent Real-Time Activities

Once again, at low loads with no shared resources, all of the scheduling algorithms perform well.

displaying a fairly small variation in performance over multiple simulations. The introduction of shared

resources has a marked effect on LBESA's performance. even at low loads - it may perform as well as the

others or it may perform much worse (for reasons that were explained earlier in this section).

As load increases, each algorithm displays more variability across multiple simulations. Like LBESA at

lower loads, DL'S performance falls off sharply as load increases with a great deal of variability.

At higher loads, DASA'S performance is superior to the others. In fact, in several cases, the worst

performance by DASA for a given set of simulations is superior to the best performance of any of the other

algorithms. Furthermore, looking at individual simulations, DASA always outperforms the others at high

loads.

5.3. Interpreting Simulation Results for Specific Applications

To complete this chapter, this section looks at a few supervisory control applications for which DASA may

be useful. They are indicative of some types of applications that might be of interest. but do not touch on

many other possibilities, such as simulators and military platform managerr "

Each application is outlined briefly, indicating roughly the types of time constraints involved, the

processing requirements, and the number and types of shared resources. Application details are provided to

explain how supervisory control system requirements are shaped by the physical world. However, the

descriptions are necessarily brief since too many details would obscure important information concerning

application structure and requirements.

5.3.1. Some Interesting Applications

This section presents thumbnail sketches of two real-world applications that may benefit from the use of

the DASA scheduler.

These applications are discussed for two reasons. First of all, they give a flavor of some other

applications (in addition to those presented in Chapter 1). The characteristics that make these applications

particularly amenable to the use of the DASA scheduling algorithm are noted where appropriate.

Secondly, they offer a chance to use real applications to study how the metrics used for the simulation

results can be initially estimated from a knowledge of the application. Of course, the applications are

presented bnefly here and much better statistics could be gathered more carefully by actual real-time

system professionals who were interested in investigating alternate scheduling algorithms.

Scheduling Dependeni Real-Time Activities C-139

5.3.1.1. Telephone Stitching

The telephone company typically creates a dedicated circuit to handle each telephone call. This circuit is

actually composed of a number of shorter circuits that are connected by computer-controlled switches.

These switches handle the routing of the call from the originator to the receiver.

Each time a call is initiated, a circuit must be set up to complete the call. At each routing switch along the

way. signals must be sent and acknowledged in a moderately short period of time - often on the order of a

second.

Because there is no way to associate a priority with a call, it is generally impossible to distinguish urgent

calls from less important calls. Therefore, a certain portion of the circuit capacity of the phone company is

often held in reserve, even during periods of peak demand, in order to service critical calls in case of an

emergency. As a result, this capacity is unavailable for general service and is wasted (in a sense) when

there are no emergency calls.

This application could almost certainly benefit by using a scheduling algorithm such as DASA. For

instance, the application could be restructured so that each call had an associated priority. As indicated

earlier, each call also has a series of time constraints that must be met in order to properly control the

switches needed to complete the call. So the simple time-value functions used in this research can be

applied directly in this application to capture both the importance and the urgency of each call in the

system. So an activity can be assigned to handle each call.

The shared resources in the system are the circuits and switch connections. To complee a call a number

of these shared resources must be acquired. At the completion of the call, they may be released.

In addition, no circuits must be reserved exclusively for emergency calls. Therefore, the overall capacity

for telephone calls available to telephone company subscribers can be increased. This is due to the

behavior of DASA under overload conditions.

Under normal conditions, where there are sufficient resources exist to satisfy demands in a timely

manner, all of the calls are completed and activities are scheduled essentially in order of their respective

deadlines regardless of their relative priorities. When demand exceeds the supply of shared resources (even

within a single switch), some calls cannot be completed. In that case, a call's priority would be considered

when making scheduling decisions so that more important calls receive shared resources at the expense of

less important calls. In fact, DASA would abort less important calls that are holding shared resources in

order to free circuits and switches to complete new, higher priority calls 4 3 .

' 3
Whle aborting any calls is unfortunate - they represent a disruption of service to customers - these abors will not entail

senous damage. Mor likely, an abort will result in a disgruntled caller and callee. And since humau amc involved in virtually every
calL they ar capable of taking appropnate steps following an aborted call - perhaps redialing immediatel), maybe waiting awhile
before redialing. or maybe just waiting for a moe opportune time if the call was not at all ur2ent. The actual abort processing presents
the telephone company with an opportunity to make the abort in a fairly painless way. As the connection is broke, each party in the
call could be informed that the call had to be aborted in favor of ai urgent call- Furthermore, the effected parties could be given some
compensation for their inconvenience such as an account credit or a free call at a later date. The processing requirements for tlus type
of abort processing could be associated with the acquisition of circuits and switch connections and is accommodated by the abort
mdel for thLis research, which allows a resource-dependent amount of processing time to be reserved in case an abort occurs.

C-140 Scheduling Dependent Real-Time Activities

The transition from overload to normal (non-overload) processing would be as graceful as the

transformation into the overload case, where most parties are likely to be uneffected while emergency

traffic acquires the resources it requires.

Without presenting them here, there are a wealth of statistics available to the telephone companies

describing the frequency at which calls arrive throughout a day, profiling various days iweekends.

weekdays, Mother's Day, and so on), the computational requirements to route a call and to make the

necessary connections, and the numbers and types of the shared resources in the system circuits, switch

connections, logs, and databases for instance). These statistics would be used to consult the simulation

charts presented in this chapter or others derived for this specific application.

5.3.1.2. Process Control: A Steel Mill

A steel mill provides a number of supervisory control applications that could benefit from advantageous

real-time scheduling. This section returns to the example that was originally introduced in Sections 1. 1.2

and 1.4, focusing on a computer system that controls a number of furnaces supplying steel with specific

compositions to a pair of continuous casters, which cast the molten steel into slabs.

First. consider the time constraints for this application.

Each caster continuously produces a slab that is cut to specified lengths to fill orders. The slab lengths

typically vary between twenty and forty feet, and each time a new slab is cut, a new slab record has to be

generated and stored.

The caster speed varies - if it moves too quickly, the metal will not have solidified sufficiently by the

time it emerges from the caster; if it moves too slowly, productivity will be unnecessarily low. The caster

is operated at the maximum speed at which solid steel can be produced. This speed is determined by the

temperature and chemistry of the steel being cast, the water temperature and spray rates of cooling nozzles

located along the length of the caster, and several other factors. Typically, a new foot of steel emerges

from the caster every six to twelve seconds.

Each time a new foot of steel is cast, a record must be created to document the chemistr,. of the foot and

other information that is used to track the metal through the mill. If this information is lost or is not

recorded on time, the chemistry of the slab cannot be adequately certified for customers with strict product

quality requirements, and the slab cannot be sold to them. The processing that occurs as each foot of steel

is cast is quite complex and requires a second or two of processing time.

The furnace has fewer tight time constraints than the caster. The turnaces produce steel in units called

"heats." A heat typically requires between thirty and forty-five minutes to produce. During that tame, the

chemistry of the steel is calculated several times by a complex analytical model. The chemistry is also

measured directly by a chemistry laboratory. Even after the heat is produced the steel's composition may

be adjusted at a liquid metallurgy facility. Near the conclusion of a heat, oxygen is blown through the

molten metal to reduce the carbon content of the steel. It is important to produce steel with a fairl.y precise

Scheduling Dependent Real-Time Activites C-141

carbon content because of the extent to which carbon content affects the physical properties of steel. The

oxygen is blown through the steel under the direcuon of the supervisor\ control computer. and it must be

shut off at a precise time after it has started. This time is determined by the supervisory control computer

based on the analytic model and the measured chemical compostion of the steel. Missing this deadline can

be costly.

Next, consider the shared resources in this example.

Each heat is tracked as it makes its way through the mill from the furnace to the caster and beyond. The

primary database for this tracking is called the heat log. An entry in the heat log is iniually made as the

furnace begins a heat. The record may be modified by the liquid metallurgy facility or a holding station or

even one of the casters. Information arnves for the heat log asynchronously. There is typically, for

example, no guaranteed response time for the chemistry laboratory to return an analysis: heats are not

produced periodically, although they are produced regularly; and the order in which heats are cast can

change on very short notice.

There are a number of other databases in this example. All are shared among multiple activities.

Usually, most of these activities are cooperating to produce steel, while others perform maintenance tasks.

such as calculating the lifetime of furnace linings and cutting torches or monitoring the inventory of scrap

metal and critical ingredients. All of these activities require access to the databases

Often activities cooperate to carry out the various application tasks. These tasks, perhaps fifTy or sixty in

number, make extensive use of signals to communicate with one another. Typically, a number of activities

cannot proceed until one or more other activities have properly gathered and prepared the necessary data or

until some external event has occurred. Signals are an efficient communication mechanism in such

systems.

Devices are also shared in this application. The communication channels to the lower-level process

control computers, to the higher-level production control computers. and to human operators that oversee

production are of particular interest.

Notice that this application fits the model outlined in this thesis. The mill exists to make steel, which has

a very definite value. It is possible to place corresponding values on the steps taken to produce the steel,

making the use of time-value functions feasible for this application

Furthermore, it is a supervisory control application with deadlines that are on the order of seconds. All of

the component physical processes proceed asynchronously, and the processor utihzation is sufficiently high

that some transient overloads will occur.

Of course, failures in the system or alarm conditions from the lower-!evel process control computers can

also add unanticipated load to the supervisory control system for a generally unspecified length of tune. In

addition, queries and commands from human operators also contmbute to the processing load They amve

asynchronously and typically must be serviced within a matter of seconds Overloads arc not unusual in

these systems.

Scheduling Dependent Real-Time Activities C-143

Chapter 6

Related Work and Current Practice

There has been a great deal of research done on scheduling, in general, and scheduling for real-time

systems. in particular, through the years. This chapter will attempt to put this thesis work in its proper

place within this overall context.

A wide variety of scheduling algorithms have been devised and analyzed through the years for computers.

Most of the basic scheduling algorithms are covered in text books on scheduling [Baker 74. French 82] or

on operating systems [Janson 85. Peterson 85]. Each algonthm possesses certain properties that

differentiate it from others. For instance, round-robin is fair, while shortest processing time first maximizes

throughput. However, many of these properties have no value in real-time systems. Nonetheless, these

texts do contain scheduling algorithms that are useful in real-time systems.

Real-time scheduling algorithms can be categorized in a number of ways. For now, the algorithms will

be divided into two groups: those that are priority-based and those that are deadline-based.

6.1. Priority-Based Scheduling

Most of the real-time systems currently in service employ a static priority scheduler of one type or

another. In these systems, component activities are assigned static priorities, and the systems are tuned so

that they will typically meet their time constraints. There is also a large body of literature that has

investigated priority-based scheduling algorithms beyond this current practice. In [Liu 73], a method for

static priority assignment was presented for periodic real-time activities. The scheduling discipline that has

grown from this work is called rate monotonic scheduling. This basic approach has been elaborated and

expanded upon since (e.g.. [Sha 86]), but the applications for which it is intended are always those where

most, if not all, of the activities are periodic, and where the periodic activities are always the most

important activities in the system. While there are systems that fit this discnption, the family of

supervisory control systems that are of interest in this thesis do not. Also, none of the rate monotonic

scheduling algorithms deal directly with the problem of scheduling a set of dependent activities.

A second class of priority-based scheduling algorithms has dealt explicitly with some of the scheduling

difficulties that arise as a result of the dynamic interaction of activities. Some operating systems (e.g.,

VMS [KB 841) implement priority adjustment schemes to refine the simple static priority model, and other

schemes have been proposed in the literature as well ([Sha 87]). All of these schemes address problems in

C-144 Scheduling Dependent Real- Time Activities

which a lower priority activity that shares a resource with a higher pnority activity can block the higher

priority activity for an arbitrarily long time. The solution, roughy speaking, allows the lower pnont.

activity to assume a higher priority for at least long enough to complete its access to the shared resource.

thereby allowing the higher priority activity to resume. This approach does solve some problems that are

associated with simple priority-based scheduling algorithms, but it does not come to gnps with the

fundamental shortcoming of all of the priority-based schemes: prionties are unable to adequately capture

the critical scheduling information for activities. Specifically, an individual activity's importance to the

overall application and its' urgency are two independent factors: an activity is not urgent just because it is

very important, and it is not important just because it is urgent. This distinction is lost in static priority

scheduling schemes where both importance and urgency must be reflected in a single quantity, the

activity's priority.

6.2. Deadline-Based Scheduling

The second group of real-time scheduling algorithms to be dealt with are the deadline-based algonthms .

These algorithms seem well-suited for real-time systems since they explicitly take into account an activity's

time constraints, and they do not typically require that all activities be periodic. Deadline schedulers have

been in use in operating systems at least since the 1960s, and [Liu 73] demonstrated the optumality of

deadline scheduling under one computational model. Unfortunately, the basic deadline scheduling

algorithm becomes unstable whenever an overload occurs: it acts to minimire the maximum ,ob lateness

and maximum job tardiness([Conway 6-). This may be the desired action, but often it is not.

Consequently. a great deal of work has been done to modify the behavior of deadline scheduling in

overload situations. Some work that does not consider dependency requirements includes: [Martel 82],.

which presents an algorithm that will complete all of the (independent) activities while minimizing the

maximum lateness of any individual activity: [Moore 68], which uses a scheme that also completes all of

the independent activities while minimizing the maximum deferral cost associated with any acuvity: and

[Locke 86], which does not necessarily execute all of the activities, but does attempt to maximize the value

acquired by completing those that are executed. In each case, these schemes do not consider dependencies,

but do address the issue of overload handling, which is one of the main interests of this thesis.

Historically, there has been a great deal of emphasis placed on being able to guarantee that deadlines can

be met. In simple systems that have been built, this has been possible, or has, at least, appeared to be

possible. As systems have grown. this has become increasingly more difficult to do. In large, dynamic

systems, it is rapidly becoming impossible. Nonetheless, guaranteeing that deadlines can be met is often

considered a prime requirement for so called hard real-time systems. and much ,,ork has been done in this

area. (In a hard real-time system, missing even a single deadline means that the entire system has failed.)

For simple systems where all of the activities need to be scheduled periodically and have fixed execution

time requirements, fLiu 731 and others allow an off-line analysis to guarantee the schedulabihtv of a set of

activities under certain assumptions. In more dynamic cases where less emphasis is placed on periodic

"In some of the management and operations research literature. deadlines art reterred to as due dates.

Scheduling Dependent Real-Time Activines C-145

activities, work similar to (Ramamntham 84] attempts to provide the same type of guarantee. However, it

is not obvious that attempting to offer true guarantees is wise in a dynamic system because honoring a

guarantee may result in an inability to schedule a new acavity that Ls clearly more important and more

urgent than the previously guaranteed activity. In addition, the guarantees that are offered are not absolute.

Receiving a guarantee indicates that adequate resources have been reserved to complete an activity by the

desired time. If resources are subsequently lost - due to a processor or a power failure, for example

the guarantees made cannot always be met.

There is also a body of literature that explicitly deals with dependencies in deadline-based scheduling

algorithms. It should be noted that what is termed a dependency consideration in this thesis encompasses

both the notion of a precedence constraint (e.g.. activity A1 must complete before either acuvity A, may

begin) and the notion of a resource requirement (e.g., activity A, requires exclusive use of resource R for

time T during its execution). In the literature, these two types of dependencies are often treated separately.

[Blazewicz 77], for instance, deals only with precedeuice constraints and provides an algorithm that will

allow activities with different arrival times and known, fixed precedence constraints to be scheduled in a

hard real-time system. This algonthm can be thought of as a deadline inheritance algonthm, whereby an

activity is scheduled as if it had a deadline "close" to that possessed by another activity that both depends

on it and has a nearer deadline.4 5 Unfortunately, these precedence constraints are fixed, making a

straightforward extension to handle resource requirements difficult. Also, no effort is made to handle

overload cases, since, by Blazewicz's defirition, a missed deadline means that the entire system has failed-

[Cheng 86] looks only at precedence constraints, while [Zhao 87) looks at both precedence constraints

and resource requirements. In both cases, these represent extensions of [Ramamritham 84] and share the

same shortcomings - they attempt to make guarantees to run specific activitues at the possible expense of

more urgent or more important activities that may arrive later, and the guarantees are not truly guarantees

since unanticipated problems can prevent their fulfillment. In addition, although [Zhao 87] presents a more

dynamic, less restrictive model than that presented in most of the work in this area, knowledge of the

specific resource requirements of any activity to be run is still assumed to be known in advance.

[Lawler 73] deals %kith precedence constraints , hen scheduling a group of activities on a single machine

and presents an algonthm that uses a monotone cost function to denve a schedule that minimizes the

maximum of the incurred costs. However, the activiues to be scheduled have no deadlines,, nor do they

have any resource requirements. [ELsaycd 82] presents heuristics to schedule a set of activities that share

resources to complete a project. Once again, there are no deadlines associated %, ith an- of the a,:tivi tes.

Some of the previous references deal with uruprocessor scheduling, and some deal %kith mu!tiprocessor or

multiple processor scheduling. This distinction was not made previously because the number of

,51n fact, one view of the DASA algorihm to be cxamincd in the thesis work is exacils this 11 iir orporatrs the ide.a that the
acivlities on which some acilvity depends must be dealt with bcfore the acivit,'s deadline, as miu%! th ach,,it, iisels However. Lt
additon. the algonthmn assesses the situation to decide if there is currently an overload, and if s., s eic '.. subet ni activities to be
run according to a meaningiul metric.

C-146 Scheduling Dependent Real-Time Activities

processors. although certainly an important consideration4 6. is of secondary concern for the work at hand.

The primary issues being addressed when comparing and contrasting those efforts with this one are:

,Ahether or not time constraints are dealt with explicitly, the amount and type of information on which

scheduling decisions are based, and the fundamental nature of applications (whether they are static or

dynamic, periodic or aperiodic; whether overloads can occur and if so how they are handled). And,

although a great deal of work has touched on various aspects of the thesis problem, none of this work has

addressed all of the key issues at once.

6.3. Other Related Work

The computational model presented in this thesis provides for the abortion of an activity. This is done for

two reasons. First of all, in any application, if an activity that manipulates shared resources is to be

terminated, unless specific steps are taken there is a danger that the shared resources will either be

unavailable for use by other activities or left in an inconsistent state. The abort mechanism addresses this

problem by allowing the shared resources to be returned to an acceptable state for later use. Secondly, an

abort mechanism similar to that just mentioned can be used to support an atomic transaction

facility [Eswaran 761. The ability to include such a powerful facility in nral-tme systems is inviting4 7 , and

the work presented here can assist in making this feasible at some point. Some work has already been done

along those lines. Often, this has involved changing the concurrency control features found in traditional

database transaction managers ([Liskov 83. McKendry 85. Sha 85]). Other work has examined the

problem of scheduling transactions using the standard concurrency control rules. However, the models

chosen for work in this area ([Liu 881, for example) usually require detailed prior knowledge of the precise

resource requirements and exact access and release timings for each resource in each transaction. This

thesis addresses a more dynamic model than that.

Finally, a few other research directions should be mentioned to put this work in its proper context. An

underlying assumption of this work is that dependencies among component activities are a natural product

of complex, dynamic real-tune systems. There is some work that attempts to approach the construction of

applications from other points of view. [Herlihy 88) explores an approach that would eliminate the need for

any activity to wait on other activities when accessing resources. However, this approach does not allow

the maintenance of mutually consistent resources, which is often important in real-time systems. [Birnnan

88, Joseph 88] outline portions of a scheme that allows application.specific consistency constraints to be

satisfied by utilizing a set of communication and replication mechanisms. How to specify the behavior of

objects that have been composed in this way so that large applications can be constructed using a modular

design methodology is an important open question with respect to this approach.

"Note,. for instance, that a scheduling algorithm that is optimal for a uniprocessor may not be optimal for a multiprocessor. A
simple deadhine scheduler with no overloads demonstrates this fact.

'In fact, [Jensen 761 suggests using transactions not only for real-tin appications, but also within a decentralized operating
system that suppors these applications.

Scheduling Dependent Real-Time Activities C-147

[Bach 86] Bach. M. J.
The Design of the UVIX Operating System.
Prentice-Hall, Inc.. 1986.

[Baker 74] Baker, K. R.
Introduction to Sequencing and Scheduling.
John Wiley & Sons, 1974.

[Bennett 88] Bennett. S.
Prentice Hall International Series in Sstems and Control Engineering: Real-Time

Computer Control: An Introduction.
Prentice Hall. 1988.

[Brnman 88] Birman, K. P. and Joseph. T. A.
Exploiting Replication.
Technical Report TR 88-917, Cornell University, Department of Computer Science,

Ithaca. NY, June, 1988.
This is a preprint of material that will appear in the collected lecture notes from 'Arctic

88, An Advanced Course on Operating Systems', Tromso, Norway, July 5-14. 1988.
The lecture notes will appear in book form later this year.

[Blazewicz 77] Blazewicz. J.
Scheduling Dependent Tasks with Different Arrival Times to Meet Deadhnes.
Modelling and Performance Evaluation of Computer Systems.
North-Holland Publishing Company, 1977.
Proceedings of the International Workshop organized by the Commission of the

European Communities. Joint Research Centre, Ispra Establishment. Department A,
Ispra (Varese), Italy, October 4-6. 1976.

[Cheng 86] Cheng, S., Stankovic, J. A. and Ramamritham, K.
Dynamic Scheduling of Groups of Tasks with Precedence Constraints in Distributed

Hard Real-Time Systems.
In Proceedings of the Real-Time Systems Symposium. pages 166-174. December, 1986.

[Conway 67] Conway, R. W., Maxwell, W. L. and Miller. L. W.
Theory of Scheduling.
Addison-Wesley Publishing Company, 1967.

[Elsayed 82] Elsayed, E. A.
Algonthms for Project Scheduling with Resource Constraints.
International Journal of Production Research 20(1):95-103, January'February, 1982.

[Eswaran 76] Eswaran, K. P.. Gray, J. N., Lorie, R. A. and Traiger. I. L.
The Notions of Consistency and Predicate Locks in a Database System,
Communications of the ACM 19(11):624-633, November. 1976.

[French 82] French, S.
Sequencing and Scheduling An Introduction to the Mathematics of the Job-Shop.
John Wiley & Sons, 1982.

[GD 801 General Dynamics.
Computer Program Product Specification for the S 'ystem Function Processor

Operational Flight Programfor the F.16 Multinational Staged Improvement
Program. Block 30.

Technical Report CPCI 7175-1AOO. General Dynamics Corporation, December, 1980.

[Herlihy 88] Herlihy, M. P.
Impossibility and Universality Results for Wait-Free Synchronization.
Technical Report CMU-CS-88-140, Carnegie Mellon University, Computer Science

Department. Pittsburgh, PA, May, 1988.

C-148 Scheduling Dependent Real-Time Activities

[Janson 85] Janson, P. A.
Operating S ystems: Structures and Mechanisms.
Academic Press, 1985.

[Jensen 75] Jensen, E. D.
Time-Value Functions for BMD Radar Scheduling.
Technical Report. Honeywell Systems and Research Center. June, 1975.

[Jensen 76] Jensen. E. D.
Decentralized Operating Systems.
In Workshop on Distributed Processing. Brown University. August, 1976.

[Joseph 88] Joseph, T. A. and Birman. K. P.
Reliable Broadcast Protocols.
Technical Report TR 88-918, Cornell University, Department of Computer Science.

Ithaca, NY, June, 1988.
This is a preprint of material that will appear in the collected lecture notes from "Arctic

88, An Advanced Course on Operating Systems', Tromso, Norway, July 5-14, 1988.
The lecture notes will appear in book form later this year.

[KB 841 Kenah, L. J. and Bate, S. F.
VAX/VMS Internals and Data Structures.
Digital Press, 1984.

[Lawler 73] Lawler, E. L.
Opumal Sequencing of a Single Machine Subject to Precedence Constraints.
Management Science 19(5):544-546, January, 1973.

[Liskov 83] Liskov, B. and Scheifler. R.
Guardians and Actions: Linguistic Support for Robust, Distributed Programs.
ACM Transactions on Programming Languages and Systems 5(3):381-40., July. 1983.

[Liu 73] Liu. C. L. and Layland, J. W.
Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment.
Journal of the Association for Computing Machinery 20(1):46-61, January, 1973.

[Liu 88] Liu, J. W. S., Lin. K. J. and Song, X.
Scheduling Hard Real-Time Transactions.
The Fifth Workshop on Real-Time Software and Operating Systems :112-116. May.

1988.

[Locke 86] Locke, C. D.
Best-Effort Decision Making for Real-Time Scheduling.
PhD thesis, Carnegie Mellon University, May, 1986.

[Mach 86] Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevanian, A., and Young,
M.
Mach: A New Kernel Foundation for L'NIX Development.
In Proceedings of Summer Usenix. July, 1986.

[MacLaren 80] MacLaren, L.
Evolving Toward Ada in Real-Time Systems.
ACM SIGPLAN Notices 15(11): 146-155, November, 1980.
This issue was also the Proceedings of the ACM-SIGPLA.N S.mposium on the Ada

Programming Language, Boston, MA. December 9-11, 1980.

[Martel 821 Martel, C.
Preemptive Scheduling with Release Times, Deadlines. and Due Dates.
Journal of the Association for Computing Machinery 29(3):812-829, July. 1Q2.

[McKendry 85] McKendry. M. S.
Ordering Actions for Visibility.
Transactions on Software Engineering (IEEE) 11(6):509-_ 19. June. 1985.

Scheduling Dependent Real- Time Activities C-149

[Moore 681 Moore, J. M.
An n Job. One Machine Sequencing Algorithmn for Miniminng the Number of Late Jobs.
Management Science 15(l): 102-109. September. 1968.

[Northcutt 87] Northcutt, J. D.
Perspectives in Computing. Volume 16 Mechanisms for Reliable Distributed Real-

Time Operating Systems: The Alpha Kernel.
Academic Press. 1987.

[Peterson 85] Peterson, J. L. and Silberschatz. A.
Operating Si -stern Concepts, Second Edition.
Addison-Wesley Publishing Company. 1985.

[Raniamrithain 84]
Ramrnntham. K. and Stankovic. J. A.
Dynamic Task Scheduhn2 in Hard Read-Time Distributed Systems.
IEEE Soft-ware 1(3):65-75, July. 1984.

[Rauch-H-indin 87]
Rauch-Hindin. W. B.
UN IX Overcomes Its Real-Time Limitations.
UNIX World 4(1 1):64-78. November. 1987.

[Ritchiie 74] Ritchie. D. M. and Thompson. K.
The UNIX Time-Sharing System.
Communications of the ACM 17(7):365-375. July, 1974.

[Sha 85] Sha. L.
Modular Concurrency Control and Failure Recorvery -- - Consistenry. Correctness and

Optima lity.
PhD thesis, Carnegie Mellon University. 1985.

[Sha 86] Sha. L., Lechoczky, J. P. and Rajkumar. R.
Solutions for Some Practical Problems in Prioritized Preemptive Scheduling.
In Proceedings of the Real-Time Systems S~mposium. pages 181-19 1. December 1986.

[Sha 87] Sha. L., Rajkumar. R. and Lehoczky. J. P.
Priority Inheritance Protocols: An Approach to Real-Time S 'vnchromuzation.
Technical Report CM U-CS-87- 18 1, Carnegie Mellon University, Computer Science

Department. Pittsburgh. PA. December, 1987.

[Stadick 83] Stadick. E. M.
A Reai-Time Control System Implementation Studyv Using the Ada Programmring

Lan guag e.
Technical Report NSWC TR-83-2 13, Naval Sur-face Weapons Center, 19S3.

[Ullmnan 75] Ullman J. D.
NP-Complete Scheduling Problems.
Journal of Computer andi Slistem Sciences 1 0(3):384-393, June. 1975.

[Zhao 87] Zhao, W., Ramamnritharn, K.. and Stankovic, 1. A.
Scheduling Tasks with Resource Requirements in Hard Real-Time Systems .
IEEE Transactions on Software Engineering SE-13(5) 564-577. May. 1987._

Scheduling Dependent Real-Time Activities C-151

Appendix A

The General Scheduling Automaton Framework

In order to provide a formal framework in which to discuss scheduling policies for real-time activities, the

following model has been adopted.

Notation The following conventions, modeled after the style used by Mauice Herlihy, are employed in

defining the computational model and the automa'on that will examine schedules:
" Identifiers written in all capital leers aenote domains of values (e.g., TIMESTAMP)

" The automaton that evaluates schedules has certain state components associated with it; these
are designated by identifiers that begin with a single capital letter followed immediately by one
or more lower-case letters (e.g.. Total, AbortClock)

" Operations are accepted by the automaton if they meet certain preconditions

" Following operation execution, certain postconditions hold; when these result in modifying the
value of a state component, the new value is followed by an apostrophe (e.g., Clock' = Clock +
1)

The Model
1. An application is composed of a set of activities, each of which comprises a sequence of

computational phases. At any given time, these activites can be referred to by means of the
phase that they are currently carrying out. Therefore the set of activities can be represented
by the set of phases currently defined: (po, pl, p2,. ..)

2. While executing an application, an observer located within the operating system could
monitor a sequence of time-stamped events passing to and from the scheduler. These events
are of the form:

t , op(pars) 0
where,

t is a timestamp,
op is the operation associated with the event (as defined below).
parms are the arguments for the operation,
O is the originator of the event (either p, for a phase. or S,

for the scheduler)

A sequence of these events is called a history. Notice that some of these events are generated
by individual phases and some are generated by the scheduler.

C-152 Scheduling Dependent Real- Time Acti ities

3, make a real table] The operations that may occur in events, and the potential originators of
each. include:

Event Potential Onzinatoris)

" request-phase(v, (expected) Phase

" abort-phase(p) Scheduler or Phase

" preempt-phasep) Scheduler

* resume-phase(p) Scheduler

" request(r) Phase

* grant(p, r. t d,) Scheduler

4. The individual computational phases that compnse an activity are delimited by
Irequest-phase' events. A 'request-phase' event ends one computational pha-e of an activity
and begins the next atomically.

5. Phases may access shared resources. A request for such access is sgnalled by a phase by
means of a 'request' event for the specific resource desired. Permission to accoss a shared
resource is signalled to the phase by means of a 'grant' event.

6. All shared resources that are held by an activity must be released at the completion or
abortion of each computational phase.

7. At any given time there is one phase that is active. It may be preempted by the scheduler.
This is signalled by a 'preempt-phase' event. The stJeduler may subsequently determine that
the phase should be resumed. this is signalled by a 'resume-phase' event.

9, A historv is defined as a sequence of events. Not all histories are meanungful or well-formed.
Let e., e1, e, . . . denote events. Then. formally. a history, H, can be denoted as:

1 = e. eI .e, ... e,

where the operator "" denotes concatenation.

Informally, a projection of a history selects certain events from a history. preserving their
relative postions in the projection. Therefore, a projection of a history could include all of the
.request-phase's from the history or all of the events that dealt with a specfic phase. The
symbol "I" denotes a projection. So for example, 111 p represents the projection of history tt
onto phase p. This projection would include all of the events that were originated by phase p
or that were originated by the scheduler and included p as an operational parameter.

9. Some additional terminoiogy and notation will be useful for discussing events. Let an event,
e represent the following event:

e = te,e op(parms) 0

Then define the following simple functions:

iimestarnpie) = teben t

eventtvpe(e) = op

source(e) = 0

Scheduling Dependent Real-Time Activities C-153

10. The conditions that define a well-formed history include8:

" event timestamps must increase monotonically and must be unique - test. examine the
timestamps on events. for e-ample, apply the function tzmestampsOK(to a h:stor% H to
verify. that it meets this requirement, where timestampsOK() is defined as.

timestampsOK(o) = timestampsOK(e) = true

timestampsOK(ele2.f) =

false. if timestamp(e1)

> timestampt e.)

timestampsOK(H), otherwise

* request for a resource must appear in the schedule before the corresponding grant -
test: for each 'grant' event, search the historn of the phase in which the 'grant'
occurred for a preceding 'request' for the same resource

" a phase cannot be preempted if it is not active: it cannot be resumed if it is active: and
so on - simple tests check all of these conditions

" a given phase either commits or aborts the events assure that a singel phase cannot do
both: however, a well-formed history must have at most one 'abort-phase' event for
any given phase - test: examine the history for the occurance of two or more 'abort-
phase' events for a single activity that are not separated b% a 'request-phase' event.

" expected compute time is accurate - test. check that the estimated computation time
equals the actual computational time used; for example. the following test could be
applied:

cttest(f) =
(Vp)(comptimeOK(If I p) vphaseaborted(H Ip) vphaseunfinished(Ii Ip))

where,

"It is not always clear that a specific test be a requirement of a well-formed history or whether it is a requirement thai determines
which histones will be accepted by a given automaton. There is no question that the proper temporal ordenring of events is a
requirement for a well-formed history; however, tests that constrain the relative ordering of specific events - for instance. 'request'
and 'grant' events - in a history are not so obviously requirements for a well-formed history. As a result, this list is merely an
attempt to lay down an initial set of tests. Some of these tests need not be done prior to submitting the stor, to an automaton - in
those cases, the automaton will enforce the requirements verified by the tests in question.

C- 154 Scheduling Dependent Real-Time.-Activities

comptimeOK(p.0) = comptimeOK(p~e) =0

comptim eO K(pe 1,el- H) =
t.,+comptimeOK(H). ife, tI~ resume-phase(p) S

ve =t1 ,grant~p) S)

A(e,=t, preempt-phase(p) S
v e2=t, request(r) p)

if (e I=t , resurne-phase(p) S
ve, =t1 grant(p) S)

A(e,=t2request-phase(vt) p
ve.=t2 abort-phase~p) 0)

phasabored~po) ufals

phaseaborted(p~e.) =as

true, if e=I abort-phase~p) 0
falIse, if e=1 1 request-phase(%vt,,) p
phaseabo rred(p dl), otherwise

phaseunfinished(p~o) =true

phaseunflnished(p.e~f) =

faIs e. if e=t abort-phase(p) 0
v e=t I request-phaseyvi,)p

phaseunflnished(p dl). otherwise

* expected abort time is accurate - test: similar to the previous test

" estimated computation time required for a phase must always be greater than or equal
to zero 49

- test: straighrforvtard inspection of each request-phase' event in the
history

* no 'request' event should request shared access to the nullresource -test:

siraightfori'ard inspection of each 'request' event in the history

11. The state components associated with the scheduling automaton fr-amework are:

" ExecMode: PHASE --* MODE (MODE is either 'normal' or 'abort')

" ExecCiock: PHASE --+ VIRThAL-TINIE

" AbortClock: PHASE -4 VIRTUAL-TIMIE

" ResumeTime: PHASE--* TIMESTAM%,P

" Val ue: PHASE --+ (TI]MESTAMP --* V ALUE)

* Total: VALUE (initially '0')

" RunningPhase: PHASE (injztiafl 'nuflphase')

" PhaseElect: PHASE (initially '<norm al, nuilphase>')

" PhaseList: list of PHASE (initially V0)

" Other state components are also associated with the automaton. These are used to

49An additional requirement may also be placed on the parameters of a 'rquest-phase' event: the value function must be of tke
appropnate form, as ouilined below. This requirement has not been included in this list because the tests that are present all apply to
the aeneral case of scheduling with dependency considerations in a reaktim- environment using information available from arbitrary
time-value functions. This requirement is related to a simpification made to make the work mome clear and more manageable, and so
does not seem to carry the same weight As the others listed above.

Scheduling Dependent Real-Time Activities C-155

handle some of the bookkeeping detail- for the specific scheduler being used. The
components that appear above are intended to reflect the state that an, specific
scheduler would need and maintain under this general model.

Specific initial values may be given to many of these statc components in order to satisfy the
requirements of a given automaton.

12. Operations recognized by the automaton and their general minimaljskeletal preconditions and
postconditions:

0teven t request-phase(v, [expected) p:.

preconditions:
true <No preconditions here so that interrupts and other new phases

can occur at any time>
postconditions:

if (RunningPhase = p) then
if (ExecMode(p) = normal) then

Total' = Total + Value(p)(t)ent)
else

;no value for aborted phase
;release the resources acquired during the phase

;accept values for scheduling parameters
Value'(p) = v
ExecClock'(p) = tCXpted
AbortClock'(p) = 0
ExecMode'(p) = normal
;note that p is not resource-waiting

,make sure p is part of the list of phases, if necessary
if (texpeted > 0) then

PhaseList" PhaseList _j (p
else

PhaseList' PhaseLast - I p

Stevent abort-phase(p) 0:

preconditions:
<Specific to the scheduler under consideration>

postconditions:
ExecMode'(p) = abort
ResumeTime'(p) = teven t

•tevent preempt -phase(p) S:

preconditions:
<Specific to the scheduler under consideration>

postconditi ons:
if (ExecMode(p) = normal) then

ExecClock'(p) = ExecClock(p) - (teent- ResumeTime(p))
else

AbortClock'(p) = AbonClock(p) - (tevn t - ResumeTime(p))

" teven t resume-phase(p) S:

preconditions:
<Specific to the scheduler under consideration>

postconditions:
ResumeTime'(p) = t,,,nt

* tev,, t request(r) p:

preconditions:

C-156 Scheduling Dependent Real-Timne.Activities

<Specific to the scheduler under consideration>
postcondifions:

ExecClock'(p) = ExecClock(p) - (t,,en - ResumeTime(p))

411tev.ent grant(p. r, undotirne(r)) S:,

preconditions:
<Specific to the scheduler under consideration>

postconditions:
ResumeTime'(p) = tevent

AbortClocl&(p) = AbortClock(p) + undotime(r) 50

Specific/Simplifying Assumptions/Restrictions Time-value fuinctions are all of the form:

v(t) = (step(val. tc))(t),
where,

tis the critical time, or deadline, for this phase of an activity,

val is the value associated with completing a phase at any time before its deadline.

step(val, tc)(t) = val, t 5t
0. t > t

50 1 functon 'undotimeO) indicates the amount of time that will be required to restore the resource just acquired to its current

state. This function may vary from system to system and from application to application. Consequently. tor the purpo'.cs of this
work. it's place and role have been indicated without applying a single definition tor this function.

Scheduling Dependeni Real-Time Activities C-157

Appendix B

Derivation of DASA/ND Scheduling Automaton

General/Initroduction. When there ae no dependency considerations - as when companng the DASA
algorithm to LBEA - some simplifications can be made to the formulae that define DASA. These

simplifications aid in allowing direct comparisons to be made between algorithms. The folowing

derivation points out and justifies these simplifications.

In each simplification that follows, the original formula to be simplified is taken directly from the

description of the DASA Algorithm. The derivauon of the simplification is then offered.

The Functional Definition of SelectPhase).
1. By definition, the fact that there are no dependencies means that there is no interaction or

cooperation among phases through shared resources. (Otherwise, there would be a risk of a
dependency arising.) In the model presented here, this situation is represented by:

(Vp)ResourceRequested(p)=nullresource

2. Simplification (1) allows the definition of Dep() to be transformed from

Dep(p) = nullphase, ifResourceRequestedp)
=nullresource,

Owner(ResourceRequestedp)), otherwise

to

Dep(p) = nullphase

3. Simplification (2) leads directly to the transformation of the definition of the function
dependenc list() from

dependencylist(p) =
O, if Dep(p)=nullphase
dependencnlist(Dep(p)) { <norral.Dep(p)> },

if AbortClock(Dep(p))
> ExecClock(Dep(p))

{ <abortDep(p)>), otherwise

to

dependencylist(p) = •

4. Simplification (2) also leads to the transformation of the function PVD() from

PVD(p) = 0. if ExecMode(p)=abort,
Val(p)+PV(Dep(p)) otherwise

Exec-Clock(p)+PT(Dep(p))'

to

C-158 Scheduling Dependent Real-Time Activities

PVD(p)= 0, if Exec~ode(p)=abort,
Va IP)otews

ExecClockip)'ohews

since

PVl(p)= 0. if p=nullphase.
0, if AbortClock~p)

< ExecClock(p),
Val(p)+PV(Dep(p)), otherwise

PT(p) = 0, ifp=nullphase.
AbortClock(p). if A bortClock~p)

< ExecClock(p),
ExecClock(p)+PT(Dep(p)). otherwise

5. Applying Simplification (3) transforms

tobescheduled(P) =
0. ifp=
(<normal~p> } -dependencvlist(p) tobescheduled(P- (p}))

ifp E P

to

tobescheduled(P)
0. ifP6

<normal,p>)Ktobescheduled(P-{p})) ifpE P

which is further simplified (by means of an-inductive proof on the number of elements in P)
to

tobescheduled(P)=
0. if 6
<normalp> I p E P ,otherwise

and finally to

tobescheduled(P) ={<normal.p> I p E P)

6. Consider the definition of mustcompletebvU:

mustcompletebv(t.P)

(p I [<normal .p> E tobescheduled(P)t'Deadlzne(p)! t] }.
otherwise

Substituting the definition of tobescheduled() that was derived in Simplification (5) yields

MUstCompletebv(t.P)=

Ip I [<normal .p>e EI<normal~q> q qE P) I\Deadlhne(p) t)),
otherwise

v.'hzch is equivalent to ...

mustcompletebY(t,P)=
0. lflt en

(p IpE P AD eadlin ep) 5t. otherwise

7. Agamn. applying Simplification (3) allows

Scheduling Dependent Real-Time Activities C-159

mustfinishby(t.P) =

o. ifP=0 v t<e, em

v mustcompleteby(tP)=o
reduce(t.P. <normal.p> } _dependencl list(p),rmustfinishbN (t.P-p))),

ifp E mustcompleteby(t.P)

to become

mustfinishby(t.P)
6 . i f P = 0 V' t < t , ,e ,t

v mustcompleteby(tP)=-o
reduce(tP, { <nornal,p> } mustfinzshby(tP-{p ())),

if p E mustcompleteby(t.P)

Consider mustfinishby() for t > t enr

Prove: In cases in which there are no dependency considerations and for which t2_t,. r

mustfinishby() never returns a set that includes a phase/mode pair for which the mode is
abort. That is. prove that

(VP)(pmp E mustfinishby(t.P) -* Mode(pmp) * abort)

Proof. This is proven by induction on i, the number of elements in P, the set of phases for
which mustfinishby() is being evaluated.

Basis. i = 0. In this case. P = 0. Therefore, mustfinishby(t.P) = 0. and the claim is trivially
true.

Inductive Step. Assume that the inductive hypothesis holds for all sets of phases with i or
fewer elements. Show that it also holds for all sets of phases with i 1 elements.

Let P denote a set of phases with i+1 elements. According to the definition of mustfinishbv()
given above:

mustfinishbn(z.P) =

0, ifP=i v t<tenj
v mustcompleteby(t.P)=0

reduce(t.P,{ <normal.p> k..mustfinishby(t.P-{p))).
ifp E mustcompleteby(t.P)

It is given that t-t? e,e.and since i+1 > 0, P o. Consequently, which of the two cases in the
above definition applies is determined solely by the value of mustcompleteby(t.P).

If mustcompletebydt. P) = 0, then mustflnishbv(t. P) = 0, too, and once again the inductive
hypothesis is triviany true.

Otherwise. musicompletebv(t.P) 0. In that case, let p,,c E mustcompleteby(t.P).

As shown in Simplification (6), mustcompleteby() is defined as:

must completeby(t.P) =
O, if t<teven t
(p IpE P,-Deadline(p) < t), otherwise

Since p,, c mustcompleteb?,(t.P) and p,,c F 0, then

P,, E (p pe PtADeadline(p) t)

Therefore, since all of the elements in this set are members of P ...

p,E P

This allows the value of mustfinishby(tP) to be written as ...

mustfinishbv(t.P) = reduce(tP, { <normalp,> } umustfinishby(t.P- (p, 1))

Reduce() is defined as:

C-I160 Scheduling Dependent Real/-Time Activities

reduceQt.PJ'MP)
reduce(t.PJ'P.- { <abortp> J), if <abort.p>.<nvrrnal.p> E PM?

A<abort~p> 15 rnzustfirshbvyt UP)
PMP' otherwise

It is given that P has i-i1 elements, and it has been proven that P,,,, is one of them.
Consequently, P- (p,, I has i elements and the inductive hypothesis asserts that..

pmp E musrfinishb'.4t,P-p {Pc)) -* Mode(pmnp) abort

Also, since Mode(<normalp ,.,>)t abort, the entire argument passed to the function reduceoj
contains no phase/mode pairs for which the mode is abort. Therefore, the second case in the
definition of reduce() applies, and reduce() acts as an identity function for this particular set
of arguments ...

reduce(t.I <normal.p,> 1, _.mustfinishbv(t.P- {p,c 1))=
I<normal,p c>) _umustfinishbv(t P {p,c 1)

Inserting this fact into the earlier expression for mustfinishbv(tJ') yields..

mustfinishbv(tP) = (<uiormalp,,c> I jmustfinishby(tP- I p,c 1)

Assume pmpE mustfinishbvy(tP). Using the definition for mustfinishb>N(t.P) that was just
presented..

prnp E I <normal~p mc> ,_musrfi1nishbv(tP- I pmc))

or equivalently...

pmnp E J <normalp,,c> vpmp E mustfinishbx r.P- pI)

As was noted earlier, the set of phases P-1pmc) has ielements, so the inductive hypothesis
holds and asserts .. .

prnp E mustfinishb% (t.P- (p,,J) -* Mode(pmp) t abort

Yet ...

pmp i! mustfinishby(t.P- fp,, l)
'-*pmpE (<norma.pnc>}

--)pmp=<normnaI,p,>

-* Mode(pmp) e abort

Applying the following identity from formal logic

to the last two implications leads to the conclusion

Mode(pmp) *abort

The above result was derived by assuming pmp E tnusyflnishb%'(t.P). Apply.ing another formal
logic identity:

AturnstileB _=A --* B

proves ...

pmp E mustfinishbv(t,P) --+Mode(pmp,) * abort

T'herefore, the inductive hypothesis holds for all sets of phases P with i+1 members, whether
or not rnustcompletebv(:,P) is empty. QED

Applying this result to the dcfinition of mustfinishbNt'). once again noting that ri'dui eu winl
always act as an identity function since

(VP)(pmp E mustfi nishbv t.P) --* Mode(pmp) * abort)

yields..

Scheduling Dependent Real-Time Activities C-161

mustfinishby(t.P)
ifP=o v t<re ent
v mustcompleteby.(tP)=0

I <normal,p>)} mustfinishby(t.P- [p }). ifp E rnustcompleteby((t.P)

Finally, a simple induction on the size of the set P will yield ...

mustfinishby(tP) =
0. ifP=o V t<teeet

v mustcompleteby(t.P)=O

<normalp> I p E mustcompleteby(tP) },
otherwise

8. In the formulation of the DASA scheduling algorithm, the function timerequiredby() is only
evaluated with a result from mustfinhshby() (ignoring the recursive evaluations that are part of
the definition of timerequiredby()). As a short inductive proof would indicate, in that case
timerequiredbv() can be simplified since (as shown in Simplification (7)) mustfinzshbvO
returns no phase/mode pairs that have an abort mode. Therefore, timerequiredby() never
receives an argument containing a phase/mode pair of the form <abort. p>, and it can be
simplified from ...

timerequiredby(PMP) =
0, if PMP=-O
ExecClock(p)+timerequiredby(PMP-{ <normal.p> }),

if <normalp> E PMP
AbortClock(p)+timerequiredby(PMP-{ <abort,p> }),

if<aborrp> E PMP

to ...

timerequiredby(PMP) =

0, if PMP=
ExecClocklp)+timerequiredby(PMP- { <normal.p>}),

if <normalp> E PMP

9. Pickone() is also only evaluated for an argument that is a result returned by evaluating
mustfinishby(). Once again, since muszfinishby() never returns a set containing an element
that is a phase/mode pair with an abort mode, pickone() can be simplified from ...

pickone(PMP) =
<normal,p>, if <normalp> E PMP

ADep(p)=nullphase
<abort,p>, if<aborp> E PMP

^ (3q)(<normal,q>E PMP
ADep(q)=nullphase)

<normalnu llphase>, otherwise

to ...

pickone(PMP) =

<norral,p>*, if<normal,p> E PMP
ADep(p)=nullphase

<normal.nu llphase>. otherwise

Since, according to Simplification (2), (Vp)Dep(p)=nullphase ..

pickone(PMP) =
<noral,p>, if<normal,p> E PMP
<normal.nullphase>, otherwise

Finally, this function can be rewritten as ..

C-162 Scheduling Dependent Real-Time Activities

pickone(PMP) =

<normal.nullphase>, if P MP-
<normalp> I <normalp> e PMP, otherwise

10. As shown in Simplification (4) above ...
PVD(p) = 0. if ExecMode(p)=abort,

Va otherwise
ExecClockVp)'

As shown in Simplification (9), pickoneO will never return a phase/mode pair as a result
whose mode is abort. As a result, the precondition for accepting an 'abort-phase' event for
the DASA automaton will never be satisfied. Since the postconditions of 'abort-phase' are the
only way that 'ExecMode' can be changed to 'abort' for any phase. then ...

(Vp)ExecMode(p)=normal

This allows the first case in the definition of PVDt' to be dropped, yielding ...

PVD(p) = Va(p)
ExecClock(p)

The Simplified Definition of the Automaton. There are also a set of simplifications that can be made to

the automaton itself when there are no dependencies to consider. Each of these simplifications are

discussed in turn.
1. As pointed out before, all of the simplifications stem from the fact that ...

(Vp)ResourceRequested(p)=nullresource

Consider the postconditions defined for a 'request' event:

ExecClock'(A)=ExecClock(A)-(t-ResumeTime(,A))
ResourceRequested'(A)=r indicate A is resource-waiting
PhaseElect'=SelecrPhase(PhaseList)
RunningPhase=nullphase give up processor until 'grant'ed resource

They necessarily include an assignment to ResourceRequested for some phase, it must be the
case that no 'request' event can be accepted by the simplified DASA automaton. Therefore,
the precondition for the acceptance of a 'request' event is false, and the event can be
eliminated from the automaton.

2. Similarly, consider the precondition for the acceptance of a 'grant' event:

(RunningP hase=-nullphase)A(Phase(PhaseElect)=A)^(r nu llresource)
A(ResourceRequested(Phase(PhaseElect))=r)A(Mode(PhaseElect)=normal)

Since it includes as conjuncts (ResourceRequested(Phase(PhaseElect))=r) and
(rt nullresource), this precondition can never be satisfied because
(Vp)ResourceRequested(p)=nuflresource. Therefore, this precondition will always be false, a
'grant' event can never be accepted, and the event can be eliminated from the 'simplified
DASA automaton.

3. Consider the precondition for the acceptance of a 'resume-phase' event:

(RunningP hase=-nullphase)A(Phase(PhaseElect)=A)^(Phase(PhaseElect) ; nullphase)
^ - ResourceWaitnng(Phase(PhaseElect))A(Mode(PhaseElect)=norrha)

In particular, consider the conjunct -ResourceWaiting(Phase(PhaseElect)), remembering
that, by definition ...

ResourceWaiting(p) (-r)(ResourceRequested(p)=rr # nullresourceAOwner(r) tp)

ResourceWaiting() must be false for all phases, implying that - ResourceWaiting(p) must be
true for all phases p. Therefore, the precondition for the acceptance of a 'resume-phase'
event may be stmplified to:

Scheduling Dependent Real-Time Activities C-163

(RunningPhase=nullphase)A(Phase(PhaseElect)=A)A(Phase(PhaseElect i t nullphase)
A(Mode(PhaseElect)=norma[)

4. The postconditions associated with a "request-phase' event include:

:release the resources acquired during the phase
for r in ResourcesHeld(A)

Owner'(r)=O
ResourcesHeld(A)=6

ResourcesHeld is initially set to 6 and is only altered by the postconditions accompanying the
acceptance of a 'grant' event. Since it was shown in sumplfication 2, that there can be no
grant' events, then these actions concerning ResourcesHeld in the postconditions for a
request-phase' have no effect. Furthermore, Owner is initially set to nullphase and is only

changed as a result of the postconditions that accompany the acceptance of a 'grant' event.
Consequently. all of the postconditions listed immediately above can be eliminated from the
simplified DASA automaton without ill-effect. In fact, the state components Owner,
ResourcesHeld, and ResourceRequested can all be eliminated from the automaton as well.

5. Consider the precondition for the acceptance of an 'abort-phase' event:

(RunningPhase=nullphase)A(Phase(PhaseElect)=A)^(Mode(PhaseElect)=abort)

In particular, consider the conjunct (Mode(PhaseElect)=abort). PhaseElect always receives
its value as a result of the following evaluation:

PhaseElect'=SelectPhase(PhaseList')

and ...

SelectPhase(P) =
pickone(mustfnishby(DL!,(pmplst)Padld({p 1,p2,p3 }))),

where
pmplist =tobescheduled(PjchedueI (p IP 2,p 3))

pickone(PMP) =
<normal.nullphase>, ifPMP=O
<normal,p> I <normalp> r PMP, otherwise

Under no circumstances will this return a phase/mode pair with a mode indicating abort.
Therefore, the conjunct (Mode(PhaseElect)=abort) will always be false and the entire
precondition is always false. Consequently, the entire 'abort-phase' portion of the DASA

automaton may be omitted in the simplified version.

(I t

MISSION
of

Rome Air Development Center

RADC plans and executes research, development, test and

N selected acquisition programs in support of Command, Control,

Communications and Intelligence (C'1) actilities. Technical and

engineering support within areas of competence is provided to
A ESD Program Offices (POs) and other ESD elements to A

perform effective acquisition of C3I systems. The areas of1

technical competence include communications, command and

control, battle management information processing, surveillance

sensors, intelligence data collection and handling, solid state

science . electromagnetics, and propagatio?,, and electronic
reliability maintainabilit.N and compatibilit'.

eo .0 e c"

